1 Recall that if *G* is a group and *x* ∈ *G*, then the conjugacy class containing *x* is {gxg⁻¹ | g ∈ G}.
Compute all of the conjugacy classes in the following groups.
(a) Z₆
(b) D₅
(c) Q₈

2 Let *G* be a finite group. Prove that $a^{|G|} = 1$ for every $a \in G$.

3 Let *n* be a positive integer, and set

$$(\mathbb{Z}_n)^{\times} = \{a \in \mathbb{Z}_n \mid \gcd(a, n) = 1\}.$$

(a) Prove that $(\mathbb{Z}_n)^{\times}$ is closed under *multiplication* modulo *n*.

- (b) Prove that $(\mathbb{Z}_n)^{\times}$ is a group under multiplication modulo *n*.
- (c) Show, by giving an example, that $(\mathbb{Z}_n)^{\times}$ is not necessarily a cyclic group.

- **4** Let *n* be a positive integer, and consider again the group $(\mathbb{Z}_n)^{\times}$.
 - (a) Compute the order $|(\mathbb{Z}_n)^{\times}|$. [HINT: Recall the **Euler** ϕ -function from MA 261.]
 - (b) Use problem 2 to prove **Euler's theorem:** If *n* is a positive integer, and *a* is an integer such that gcd(a, n) = 1, then

 $a^{\phi(n)} \equiv 1 \pmod{n}.$