1 For each group *G* and subgroup $H \le G$ below, list all left cosets of *H* in *G* and list all right cosets of *H* in *G*. You do not need to show every detail of your work.

(a) G = D₄, H = ⟨r²⟩
(b) G = D₄, H = ⟨sr²⟩
(c) G = Q₈, H = ⟨-1⟩
(d) G = Q₈, H = ⟨j⟩

2 Let *G* be a group, and suppose $H \le G$ is a subgroup of index 2. Prove that aH = Ha for every $a \in G$.

3 Prove that if $N \trianglelefteq G$ and H is any subgroup of G, then $N \cap H \trianglelefteq H$.