1 Recall that $GL_n(\mathbb{R})$ is the group of all $n \times n$ invertible matrices with entries in \mathbb{R} . Recall also that the **determinant** is a function det: $GL_n(\mathbb{R}) \to \mathbb{R}^{\times}$ with the properties that

- det(AB) = det(A) det(B) for all $A, B \in GL_n(\mathbb{R})$;
- det $(I_n) = 1$, where $I_n \in GL_n(\mathbb{R})$ is the $n \times n$ identity matrix.

Prove that the **special linear group**

$$\operatorname{SL}_n(\mathbb{R}) = \{A \in \operatorname{GL}_n(\mathbb{R}) \mid \det(A) = 1\}$$

is a normal subgroup of $GL_n(\mathbb{R})$.

2 Let $H = \{1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)\} \le S_4$. (You should convince yourself that *H* is in fact a subgroup of S_4 ; however, you do not need to prove it here.)

- (a) Prove that $H \leq S_4$.
- (b) What is the cardinality of S_4/H ? Write a complete list (with no repetitions) of the cosets of *H* in S_4 .
- (c) Write the group operation table for the quotient group S_4/H .
- (d) Give an example of a homomorphism with domain S_4 and kernel H.

3 Let *G* be a group and let *N* be a normal subgroup of *G*. Prove that the cosets *xN* and *yN* commute in *G*/*N* if and only if $x^{-1}y^{-1}xy \in N$. (The element $x^{-1}y^{-1}xy$ is called the **commutator** of *x* and *y* and is denoted by [x, y].)

4 Let *G* be a group. Prove that

$$C = \langle x^{-1}y^{-1}xy \mid x, y \in G \rangle$$

is a normal subgroup of G, and that G/C is abelian. (C is called the **commutator subgroup** of G.)