1 Let G be a group. An isomorphism from G to itself is called an automorphism of G.
(a) Let $g \in G$. Prove that the "conjugation by g " map

$$
\begin{aligned}
\gamma_{g}: G & \rightarrow G \\
x & \mapsto g x g^{-1}
\end{aligned}
$$

is an automorphism.
(b) Prove that

$$
\operatorname{Inn}(G)=\left\{\gamma_{g} \mid g \in G\right\}
$$

is a group under function composition. This group is called the inner automorphism group of G.

2 Let G be a group.
(a) Prove that

$$
\begin{aligned}
\Gamma: G & \rightarrow \operatorname{Inn}(G) \\
g & \mapsto \gamma_{g}
\end{aligned}
$$

is a surjective homomorphism.
(b) Use the Fundamental Isomorphism Theorem to prove that $G / Z(G) \cong \operatorname{Inn}(G)$.

