1 Let G be a group acting on a set X. Let \sim be the relation on X defined by
$x_{1} \sim x_{2} \quad$ if and only if there exists $g \in G$ such that $g x_{1}=x_{2}$.
Prove that \sim is an equivalence relation on X.

2 Let $G=\mathrm{GL}_{2}(\mathbb{R})$ be the group of invertible 2×2 matrices with entries from \mathbb{R} (with matrix multiplication as the group operation). Let

$$
X=\left\{\left.\left[\begin{array}{l}
x \\
y
\end{array}\right] \right\rvert\, x, y \in \mathbb{R}\right\}
$$

Define a function $G \times X \rightarrow X$ by matrix multiplication:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a x+b y \\
c x+d y
\end{array}\right] .
$$

(a) Prove that this is a group action.
(b) Prove that this action is faithful.
(c) Prove that this action is not transitive.

3 The group

$$
D_{4}=\left\langle r, s \mid r^{4}=s^{2}=1, r s=s r^{-1}\right\rangle
$$

acts on the square below, where r acts as a 90° clockwise rotation and s acts as a reflection across the axis of symmetry passing through the vertex labelled a.

We consider the action of D_{4} on the set $X=\{a, b, c, \ldots, i\}$ of nine labelled points.
(a) Find all of the orbits of the action of D_{4} on X.
(b) Find the stabilizer subgroup $G_{a}=\left\{g \in D_{4} \mid g \cdot a=a\right\}$ of the point a.
(c) Find the stabilizer subgroup G_{b} of the point b.
(d) Find the fixed points of the element r. That is, find all $x \in X$ such that $r \cdot x=x$.
(e) Find the fixed points of the element $s r$.

