1 Let G be a finite group acting on a finite set X.
(a) Suppose $|G|=3^{4}=81$. Prove that if 3 does not divide $|X|$, then there is some $x \in X$ such that $G_{x}=G$.
(b) More generally, suppose $|G|=p^{k}$, where p is a prime number and k is a positive integer. Prove that if p does not divide $|X|$, then there is some $x \in X$ such that $G_{x}=G$.

2 Let G be a finite group acting transitively on a set X.
(a) Show that $|X|$ divides $|G|$. In particular, X is a finite set.
(b) Use Burnside's Lemma to prove that there is at least one group element with no fixed points; that is, there is an element $g \in G$ such that X^{g} is the empty set.

3 The four edges of a square are to be painted. We have 6 colors of paint available. Only one color is used on each edge, and the same color may be used on multiple edges.
(a) Let X be the set of all ways to paint the four edges. Compute $|X|$.
(b) Let D_{4} act on X in the natural way. For each element $g \in D_{4}$, compute the number $\left|X^{g}\right|$ of colorings fixed by g.
(c) Use Burnside's Lemma to compute the number of distinguishable ways the square can be painted.

