1 Let *R* be a ring with identity.

- (a) Prove that (-1)a = -a = a(-1) for all $a \in R$.
- (b) Prove that $(-1)^2 = 1$ in *R*.
- (c) Prove that if $u \in R$ is a unit, then so is -u.

2 Let $S = \{f : \mathbb{R} \to \mathbb{R}\}$ be the set of all functions from \mathbb{R} to itself. Addition and multiplication of functions in *S* are defined *pointwise*, so that if $f, g \in S$, then f + g is the function

$$(f+g)(x) = f(x) + g(x)$$

and fg is the function

(fg)(x) = f(x)g(x).

- (a) Prove that *S* is a ring under these operations.
- (b) Does *S* have an identity element? Is *S* commutative?
- (c) Let $a \in \mathbb{R}$. Define a function

$$\varphi_a \colon S \to \mathbb{R}$$
$$f \mapsto f(a).$$

That is, φ_a is the **evaluation at** *a* function. Prove that φ_a is a ring homomorphism.

3 Describe all *ring* homomorphisms $\varphi \colon \mathbb{Z} \to \mathbb{Z}$. [HINT: What can $\varphi(1)$ be?]

4 A ring *R* is called a **Boolean ring** if $a^2 = a$ for every $a \in R$. Prove that every Boolean ring is commutative.