1 Let R be a ring with identity.
(a) Prove that $(-1) a=-a=a(-1)$ for all $a \in R$.
(b) Prove that $(-1)^{2}=1$ in R.
(c) Prove that if $u \in R$ is a unit, then so is $-u$.

2 Let $S=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ be the set of all functions from \mathbb{R} to itself. Addition and multiplication of functions in S are defined pointwise, so that if $f, g \in S$, then $f+g$ is the function

$$
(f+g)(x)=f(x)+g(x)
$$

and $f g$ is the function

$$
(f g)(x)=f(x) g(x)
$$

(a) Prove that S is a ring under these operations.
(b) Does S have an identity element? Is S commutative?
(c) Let $a \in \mathbb{R}$. Define a function

$$
\begin{aligned}
\varphi_{a}: S & \rightarrow \mathbb{R} \\
f & \mapsto f(a) .
\end{aligned}
$$

That is, φ_{a} is the evaluation at a function. Prove that φ_{a} is a ring homomorphism.

3 Describe all ring homomorphisms $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$. [HINT: What can $\varphi(1)$ be?]

4 A ring R is called a Boolean ring if $a^{2}=a$ for every $a \in R$. Prove that every Boolean ring is commutative.

