1 Let \mathbb{Z} be the set of all integers, and let

$$
4 \mathbb{Z}=\{n \in \mathbb{Z} \mid n=4 k \text { for some } k \in \mathbb{Z}\}
$$

be the set of integers which are multiples of 4 .
(a) Let \sim_{4} be the relation on \mathbb{Z} defined by

$$
a \sim_{4} b \quad \text { if and only if } \quad a-b \in 4 \mathbb{Z}
$$

Prove that \sim_{4} is an equivalence relation by showing that it is reflexive, symmetric, and transitive.
(b) How many equivalence classes does the relation \sim_{4} have? Describe them.

2 Let $f: X \rightarrow Y$ be a surjective map of sets. For each $y \in Y$, the fiber of f over y is the set

$$
f^{-1}(y)=\{x \in X \mid f(x)=y\} .
$$

[CAUTION: The fiber $f^{-1}(y)$ is a subset of X.]
(a) Consider the surjection $f: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ given by $f(x)=x^{2}$. For each $r \in \mathbb{R}_{\geq 0}$, describe the fiber $f^{-1}(r)$.
(b) Let $f: X \rightarrow Y$ be a surjective map of sets. Prove that the relation

$$
x_{1} \sim x_{2} \quad \text { if and only if } f\left(x_{1}\right)=f\left(x_{2}\right)
$$

is an equivalence relation on the set X. Prove that the equivalence classes are the fibers of f.

