1
(a) Define a binary operation $*$ on Q by

$$
a * b=a+b-a b
$$

Answer the following questions
i. Is $*$ associative?
ii. Is $*$ commutative?
iii. Is there an identity element for $*$?
iv. Which elements of \mathbb{Q} have an inverse with respect to $*$?

In each case, justify your answer with a brief proof or explanation.
(b) Define a binary operation \star on Q by

$$
a \star b=\frac{a b}{3} .
$$

Answer questions (i.)-(iv.) for the binary operation \star.

2 Let

$$
H=\left\{\left.\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\} \subset M_{2}(\mathbb{R})
$$

(a) Show that H is closed under matrix addition and matrix multiplication.
(b) Show that $\langle\mathbb{C},+\rangle$ is isomorphic to $\langle H,+\rangle$.
(c) Show that $\langle\mathbb{C}, \cdot\rangle$ is isomorphic to $\langle H, \cdot\rangle$.

This shows that H is a matrix representation of the complex numbers \mathbb{C}.

3 Let $G=\left\{z \in \mathbb{C} \mid z^{n}=1\right.$ for some $\left.n \in \mathbb{Z}^{+}\right\}$.
(a) Prove that G is closed under multiplication.
(b) Show that G is not closed under addition.
(c) Prove that G is a group under multiplication. This group is called the group of roots of unity in \mathbb{C}.

