1 Let $\left\langle S, *_{S}\right\rangle,\left\langle T, *_{T}\right\rangle$, and $\left\langle U, *_{U}\right\rangle$ be binary structures.
(a) Recall that the identity map $\mathrm{id}_{S}: S \rightarrow S$ is defined by $\operatorname{id}_{S}(x)=x$ for all $x \in S$. Prove that id_{S} is an isomorphism. That is, $S \cong S$.
(b) Suppose $\varphi: S \rightarrow T$ is an isomorphism. Then φ is a bijection, so the inverse map $\varphi^{-1}: T \rightarrow S$ exists. Prove that φ^{-1} is also an isomorphism. That is, if $S \cong T$, then $T \cong S$.
(c) Suppose $\varphi: S \rightarrow T$ and $\psi: T \rightarrow U$ are isomorphisms. Prove that the composition $\psi \circ \varphi: S \rightarrow U$ is an isomorphism. That is, if $S \cong T$ and $T \cong U$, then $S \cong U$.

2 Let G and H be groups, and let $\varphi: G \rightarrow H$ be an isomorphism.
(a) Prove that if e_{G} is the identity element in G, then $\varphi\left(e_{G}\right)$ is the identity element in H.
(b) Let $a \in G$. Prove that $\varphi\left(a^{-1}\right)$ is the inverse of $\varphi(a)$ in H; that is, in symbols, $\varphi\left(a^{-1}\right)=\varphi(a)^{-1}$.

