- **1** Let $\langle R, * \rangle$ be a binary structure with the following properties
 - * is associative;
 - there exists an identity element $e \in R$ for *.

Let R^{\times} be the set of invertible elements in R,

$$R^{\times} = \{r \in R \mid \text{there exists } r^{-1} \in R \text{ such that } r * r^{-1} = r^{-1} * r = e\}.$$

Prove that R^{\times} is closed under * and is a group. (R^{\times} is called the **group of units** of *R*.)

2 Let *G* be a group and let $a \in G$. Prove that, for any $n \in \mathbb{Z}_{>0}$, the inverse element of a^n is $(a^{-1})^n$. That is, $(a^n)^{-1} = (a^{-1})^n$. Your proof should use mathematical induction.

3 Let *G* be a group with the property that $a^2 = e$ for every $a \in G$. Prove that *G* is abelian.

- **4** Let *G* be a finite group of even order.
 - (a) Prove that the set

$$t(G) = \{ g \in G \mid g \neq g^{-1} \}$$

has an even number of elements.

(b) Use part (a) to prove that there is a non-identity element $a \in G$ such that $a^2 = e$.