- **1** Let *G* be a group, and let $H \leq G$ and $K \leq G$ be subgroups.
 - (a) Prove that $H \cap K \leq G$.
 - (b) Prove that $H \cup K \leq G$ if and only if either $H \subseteq K$ or $K \subseteq H$.

- **2** Let *G* be a group, and let $x, g \in G$.
 - (a) Prove by induction that $(gxg^{-1})^n = gx^ng^{-1}$.
 - (b) Prove that $|gxg^{-1}| = |x|$. [HINT: There are two cases: Either $|x| < \infty$ or $|x| = \infty$.]
 - (c) Deduce that |ab| = |ba| for all $a, b \in G$.

3 Let *G* be a group with no proper nontrivial subgroups. That is, the only subgroups of *G* are *G* itself and $\{e\}$, where $e \in G$ is the identity element. Prove that *G* is cyclic and that |G| = p for some prime number *p*.