1 Let *G* and *H* be groups, let φ : *G* \rightarrow *H* be an isomorphism, and let $a \in G$. Prove that $|\varphi(a)| = |a|$.

2 Let *G* be a group. The **center** of *G* is

 $Z(G) = \{ z \in G \mid zg = gz \text{ for all } g \in G \}.$

(a) Prove that Z(G) is a subgroup of *G*.

- (b) Prove that Z(G) is abelian.
- (c) Let $n \ge 3$ be an integer. Prove that

$$Z(D_n) = \begin{cases} \{1\} & \text{if } n \text{ is odd;} \\ \{1, r^{n/2}\} & \text{if } n \text{ is even.} \end{cases}$$