1 Recall that

$$
D_{4}=\left\langle r, s \mid r^{4}=s^{2}=1, r s=s r^{-1}\right\rangle .
$$

(a) Find all cyclic subgroups of D_{4}.
(b) Find all proper subgroups of D_{4} which are not cyclic.
(c) Draw the subgroup lattice of D_{4}.

2 Recall that

$$
Q_{8}=\left\langle-1, i, j, k \mid(-1)^{2}=1, i^{2}=j^{2}=k^{2}=i j k=-1\right\rangle .
$$

As a set, we have

$$
Q_{8}=\{1, i, j, k,-1,-i,-j,-k\},
$$

where $-i$ is shorthand for $(-1) \cdot i$, and similarly for $-j$ and $-k$.
(a) Write the multiplication table for Q_{8}.
(b) Find all cyclic subgroups of Q_{8}.
(c) Prove that every proper subgroup of Q_{8} is cyclic.
(d) Draw the subgroup lattice of Q_{8}.

3 Let G be a group and let $g \in G$ be an element. Define a function

$$
\begin{aligned}
\lambda_{g}: G & \rightarrow G \\
x & \mapsto g x .
\end{aligned}
$$

(a) Prove that λ_{g} is a bijection from G to itself.
(b) Prove that λ_{g} is an isomorphism if and only if g is the identity element in G.

4 Let G be a group. Define a relation on G by
$x \sim y$ if and only if there exists $g \in G$ such that $y=g x g^{-1}$.
Prove that \sim is an equivalence relation.

