
Name: MA 361: HW 9 10/7/2019

1 Recall that
D4 = 〈r, s | r4 = s2 = 1, rs = sr−1〉.

(a) Find all cyclic subgroups of D4.

(b) Find all proper subgroups of D4 which are not cyclic.

(c) Draw the subgroup lattice of D4.
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2 Recall that

Q8 = 〈−1, i, j, k | (−1)2 = 1, i2 = j2 = k2 = ijk = −1〉.

As a set, we have
Q8 = {1, i, j, k,−1,−i,−j,−k},

where −i is shorthand for (−1) · i, and similarly for −j and −k.

(a) Write the multiplication table for Q8.

(b) Find all cyclic subgroups of Q8.

(c) Prove that every proper subgroup of Q8 is cyclic.

(d) Draw the subgroup lattice of Q8.
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3 Let G be a group and let g ∈ G be an element. Define a function

λg : G → G
x 7→ gx.

(a) Prove that λg is a bijection from G to itself.

(b) Prove that λg is an isomorphism if and only if g is the identity element in G.
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4 Let G be a group. Define a relation on G by

x ∼ y if and only if there exists g ∈ G such that y = gxg−1.

Prove that ∼ is an equivalence relation.


