1 Recall that

$$D_4 = \langle r, s \mid r^4 = s^2 = 1, rs = sr^{-1} \rangle.$$

- (a) Find all cyclic subgroups of D_4 .
- (b) Find all proper subgroups of D_4 which are not cyclic.
- (c) Draw the subgroup lattice of D_4 .

2 Recall that

$$Q_8 = \langle -1, i, j, k \mid (-1)^2 = 1, i^2 = j^2 = k^2 = ijk = -1 \rangle.$$

As a set, we have

$$Q_8 = \{1, i, j, k, -1, -i, -j, -k\},\$$

where -i is shorthand for $(-1) \cdot i$, and similarly for -j and -k.

(a) Write the multiplication table for Q_8 .

(b) Find all cyclic subgroups of Q_8 .

(c) Prove that every proper subgroup of Q_8 is cyclic.

(d) Draw the subgroup lattice of Q_8 .

3 Let *G* be a group and let $g \in G$ be an element. Define a function

$$\lambda_g \colon G \to G$$
$$x \mapsto gx.$$

(a) Prove that λ_g is a bijection from *G* to itself.

(b) Prove that λ_g is an isomorphism if and only if *g* is the identity element in *G*.

4 Let *G* be a group. Define a relation on *G* by

 $x \sim y$ if and only if there exists $g \in G$ such that $y = gxg^{-1}$.

Prove that \sim is an equivalence relation.