1 Let *F* be a field and let $R \subseteq F$ be a subring such that $1 \in R$. Prove that *R* is an integral domain.

2 Let *F* be a field and let R = F[x, y] be the ring of polynomials in two variables with coefficients in *F*.

(a) Prove that

$$\operatorname{ev}_{(0,0)} \colon F[x,y] \to F$$

 $p(x,y) \mapsto p(0,0)$

is a surjective ring homomorphism.

(b) Prove that ker $ev_{(0,0)}$ is equal to the ideal

$$(x,y) = \{xr(x,y) + ys(x,y) \mid r,s \in F[x,y]\}$$

- (c) Use the first isomorphism theorem to prove that $(x, y) \subseteq F[x, y]$ is a maximal ideal.
- (d) Find an ideal $I \subseteq F[x, y]$ such that I is prime but not maximal. [HINT: Find a surjective homomorphism $F[x, y] \rightarrow F[x]$.]
- (e) Find an ideal $J \subseteq F[x, y]$ such that *J* is not prime.

3 Let *F* be a field and *n* a positive integer. Show that if $\omega \in F$ satisfies $\omega^n = 1$, then either $\omega = 1$ or $1 + \omega + \omega^2 + \cdots + \omega^{n-1} = 0$.

4 Use Cardano's method to find all complex solutions to

 $x^3 + 6x^2 + 18x + 18 = 0.$