1 Let F be a field and let $R \subseteq F$ be a subring such that $1 \in R$. Prove that R is an integral domain.

2 Let F be a field and let $R=F[x, y]$ be the ring of polynomials in two variables with coefficients in F.
(a) Prove that

$$
\begin{aligned}
\mathrm{ev}_{(0,0)}: F[x, y] & \rightarrow F \\
p(x, y) & \mapsto p(0,0)
\end{aligned}
$$

is a surjective ring homomorphism.
(b) Prove that $\operatorname{ker~}_{(0,0)}$ is equal to the ideal

$$
(x, y)=\{x r(x, y)+y s(x, y) \mid r, s \in F[x, y]\}
$$

(c) Use the first isomorphism theorem to prove that $(x, y) \subseteq F[x, y]$ is a maximal ideal.
(d) Find an ideal $I \subseteq F[x, y]$ such that I is prime but not maximal. [HINT: Find a surjective homomorphism $F[x, y] \rightarrow F[x]$.]
(e) Find an ideal $J \subseteq F[x, y]$ such that J is not prime.

3 Let F be a field and n a positive integer. Show that if $\omega \in F$ satisfies $\omega^{n}=1$, then either $\omega=1$ or $1+\omega+\omega^{2}+\cdots+\omega^{n-1}=0$.

4 Use Cardano's method to find all complex solutions to

$$
x^{3}+6 x^{2}+18 x+18=0
$$

