1 Let $\alpha=\sqrt{2+\sqrt{2}}$.
(a) Compute the degree $[\mathbb{Q}(\alpha): \mathbb{Q}]$.
(b) Prove that $\mathbb{Q}(\alpha) \supseteq \mathbb{Q}$ is a Galois extension.
(c) Prove that the Galois group $\operatorname{Gal}(\mathbb{Q}(\alpha) / \mathbb{Q})$ is a cyclic group.
(d) Use the Fundamental Theorem of Galois Theory to draw the lattice of intermediate fields between \mathbb{Q} and $\mathbb{Q}(\alpha)$.

2 On HW 9, you proved that the splitting field for $x^{4}+1$ over \mathbb{Q} is $\mathbb{Q}(\zeta)$, where $\zeta^{4}=-1$. You also showed that $[\mathbb{Q}(\zeta): \mathbb{Q}]=4$.
(a) Prove that $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ is isomorphic to the Klein 4-group.
(b) Use the Fundamental Theorem of Galois Theory to draw the lattice of intermediate fields between Q and $\mathbb{Q}(\zeta)$.

3 Recall that, if p is a prime number, the p th cyclotomic polynomial is

$$
\Phi_{p}(x)=\frac{x^{p}-1}{x-1}=1+x+x^{2}+\cdots+x^{p-1}
$$

We now define a cyclotomic polynomial $\Phi_{n}(x) \in \mathbb{Q}[x]$ for every positive integer n.
Set $\Phi_{1}(x)=x-1$. If $n>1$, then we inductively define $\Phi_{n}(x)$ so that

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)
$$

where the product is over all divisors d of n. That is, we are assuming (by induction) that the cyclotomic polynomials $\Phi_{d}(x)$ for all proper divisors $d<n$ have already been defined, and so the only unknown in the above equation is $\Phi_{n}(x)$.
(a) Check that this inductive definition is consistent with the original definition of $\Phi_{p}(x)$ for p prime.
(b) Use this definition to compute $\Phi_{8}(x), \Phi_{10}(x)$, and $\Phi_{12}(x)$.
(c) Show that

$$
n=\sum_{d \mid n} \phi(d)
$$

where ϕ denotes the Euler totient function. [HINT: Count the number of integers $k \in\{1, \ldots, n\}$ such that $\left.\operatorname{gcd}(k, n)=\frac{n}{d}.\right]$
(d) Prove that $\Phi_{n}(x)$ has degree $\phi(n)$.

4 Let $\Phi_{n}(x) \in \mathbb{Q}[x]$ be the nth cyclotomic polynomial, as defined in the previous problem.
Recall that ζ is an nth root of unity if $\zeta^{n}=1$, and ζ is a primitive nth root of unity if additionally $\zeta^{i} \neq 1$ for $1 \leq i<n$.
(a) Show that ζ is an nth root of unity if and only if ζ is a root of $x^{n}-1$, and ζ is a primitive nth root of unity if and only if ζ is a root of $\Phi_{n}(x)$.
(b) Show that, for any odd positive integer $n, \Phi_{2 n}(x)=\Phi_{n}(-x)$. [HINT: If ζ is a primitive nth root of 1 , show that $-\zeta$ is also a root of unity. What is its order?]
(c) Let ζ be a primitive nth root of unity. Prove that $\mathbb{Q}(\zeta)$ is the splitting field of $x^{n}-1$. (The field $\mathbb{Q}(\zeta)$ is called the nth cyclotomic field.)

5 Let n be a positive integer, and let $U_{n}=(\mathbb{Z} / n \mathbb{Z})^{\times}$be the group of units in the ring $\mathbb{Z} / n \mathbb{Z}$. That is,

$$
U_{n}=\{\bar{k} \in \mathbb{Z} / n \mathbb{Z} \mid \operatorname{gcd}(k, n)=1\}
$$

(You considered this group on HW 11 in MA 361.)
Let ζ be a primitive nth root of unity.
(a) Use the fact that $\Phi_{n}(x)$ is irreducible over Q (a result due to Gauss and Dedekind) to show that $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ is a group of order $\phi(n)$.
(b) Prove that $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q}) \cong U_{n}$.
[HINT: Any automorphism of $\mathbb{Q}(\zeta)$ is determined by where it maps ζ. Show that there is an automorphism $\sigma_{k}: \zeta \mapsto \zeta^{k}$ if and only if $\operatorname{gcd}(k, n)=1$.]

