1 Let $\alpha = \sqrt{2 + \sqrt{2}}$.

- (a) Compute the degree $[\mathbb{Q}(\alpha) : \mathbb{Q}]$.
- (b) Prove that $\mathbb{Q}(\alpha) \supseteq \mathbb{Q}$ is a Galois extension.
- (c) Prove that the Galois group $Gal(\mathbb{Q}(\alpha)/\mathbb{Q})$ is a cyclic group.
- (d) Use the Fundamental Theorem of Galois Theory to draw the lattice of intermediate fields between Q and $Q(\alpha)$.

2 On HW 9, you proved that the splitting field for $x^4 + 1$ over \mathbb{Q} is $\mathbb{Q}(\zeta)$, where $\zeta^4 = -1$. You also showed that $[\mathbb{Q}(\zeta) : \mathbb{Q}] = 4$.

- (a) Prove that $Gal(\mathbb{Q}(\zeta)/\mathbb{Q})$ is isomorphic to the Klein 4-group.
- (b) Use the Fundamental Theorem of Galois Theory to draw the lattice of intermediate fields between Q and $Q(\zeta)$.

3 Recall that, if *p* is a prime number, the *p*th **cyclotomic polynomial** is

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = 1 + x + x^2 + \dots + x^{p-1}.$$

We now define a cyclotomic polynomial $\Phi_n(x) \in \mathbb{Q}[x]$ for every positive integer *n*. Set $\Phi_1(x) = x - 1$. If n > 1, then we inductively define $\Phi_n(x)$ so that

$$x^n - 1 = \prod_{d|n} \Phi_d(x),$$

where the product is over all divisors *d* of *n*. That is, we are assuming (by induction) that the cyclotomic polynomials $\Phi_d(x)$ for all *proper* divisors d < n have already been defined, and so the only unknown in the above equation is $\Phi_n(x)$.

- (a) Check that this inductive definition is consistent with the original definition of $\Phi_p(x)$ for *p* prime.
- (b) Use this definition to compute $\Phi_8(x)$, $\Phi_{10}(x)$, and $\Phi_{12}(x)$.
- (c) Show that

$$n=\sum_{d\mid n}\phi(d),$$

where ϕ denotes the Euler totient function. [HINT: Count the number of integers $k \in \{1, ..., n\}$ such that $gcd(k, n) = \frac{n}{d}$.]

(d) Prove that $\Phi_n(x)$ has degree $\phi(n)$.

4 Let $\Phi_n(x) \in \mathbb{Q}[x]$ be the *n*th cyclotomic polynomial, as defined in the previous problem.

Recall that ζ is an *n*th root of unity if $\zeta^n = 1$, and ζ is a primitive *n*th root of unity if additionally $\zeta^i \neq 1$ for $1 \leq i < n$.

- (a) Show that ζ is an *n*th root of unity if and only if ζ is a root of $x^n 1$, and ζ is a primitive *n*th root of unity if and only if ζ is a root of $\Phi_n(x)$.
- (b) Show that, for any odd positive integer n, $\Phi_{2n}(x) = \Phi_n(-x)$. [HINT: If ζ is a primitive *n*th root of 1, show that $-\zeta$ is also a root of unity. What is its order?]
- (c) Let ζ be a primitive *n*th root of unity. Prove that $\mathbb{Q}(\zeta)$ is the splitting field of $x^n 1$. (The field $\mathbb{Q}(\zeta)$ is called the *n*th cyclotomic field.)

5 Let *n* be a positive integer, and let $U_n = (\mathbb{Z}/n\mathbb{Z})^{\times}$ be the group of units in the ring $\mathbb{Z}/n\mathbb{Z}$. That is,

 $U_n = \{ \overline{k} \in \mathbb{Z}/n\mathbb{Z} \mid \gcd(k, n) = 1 \}.$

(You considered this group on HW 11 in MA 361.)

Let ζ be a primitive *n*th root of unity.

- (a) Use the fact that $\Phi_n(x)$ is irreducible over \mathbb{Q} (a result due to Gauss and Dedekind) to show that $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ is a group of order $\phi(n)$.
- (b) Prove that $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) \cong U_n$.

[HINT: Any automorphism of $\mathbb{Q}(\zeta)$ is determined by where it maps ζ . Show that there is an automorphism $\sigma_k \colon \zeta \mapsto \zeta^k$ if and only if gcd(k, n) = 1.]