- Let *F* be a field and *p*(*x*), *q*(*x*) ∈ *F*[*x*]. Show that the following are equivalent:
 (a) *p*(*x*) divides *q*(*x*).
 (b) *q*(*x*) ∈ (*p*(*x*)).
 - (c) $(q(x)) \subseteq (p(x))$.

2 Let *R* be a commutative ring with 1 and let *a* and *b* be nonzero elements of *R*. A **least common multiple** of *a* and *b* is an element $\ell \in R$ such that

- *a* divides ℓ and *b* divides ℓ ; and
- if *a* divides ℓ' and *b* divides ℓ' , then ℓ divides ℓ' .
- (a) Prove that if *d* is a greatest common divisor of *a* and *b*, then $\frac{ab}{d}$ is a least common multiple of *a* and *b*.
- (b) Let *F* be a field. Show that any two nonzero polynomials $p(x), q(x) \in F[x]$ have a least common multiple m(x). Prove that $(p(x)) \cap (q(x))$ is the principal ideal generated by m(x).

3 Consider the polynomials

 $f(x) = x^{10} + x^5 + 1$ and $g(x) = x^6 - 1$

in $\mathbb{Q}[x]$.

(a) Use the Euclidean algorithm to find a greatest common divisor of f(x) and g(x). Write the greatest common divisor in the form

$$a(x)f(x) + b(x)g(x)$$

for some $a(x), b(x) \in \mathbb{Q}[x]$.

(You may omit a proof that the Euclidean algorithm is valid in F[x]. It is essentially identical to the proof used for \mathbb{Z} .)

- (b) Find a least common multiple of f(x) and g(x).
- (c) Describe the ideals $(x^{10} + x^5 + 1, x^6 1)$ and $(x^{10} + x^5 + 1) \cap (x^6 1)$.

4 Let *F* be a field, and let $R \subseteq F[x]$ be the subset of all polynomials whose coefficient of *x* is equal to 0.

- (a) Prove that *R* is a subring of F[x] and that *R* is an integral domain.
- (b) Show that the constant polynomial 1 is a greatest common divisor of x^2 and x^3 in R.
- (c) Show that there is no element of *R* which is a greatest common divisor of x^5 and x^6 .