1 Let F be a field and $p(x), q(x) \in F[x]$. Show that the following are equivalent:
(a) $p(x)$ divides $q(x)$.
(b) $q(x) \in(p(x))$.
(c) $(q(x)) \subseteq(p(x))$.

2 Let R be a commutative ring with 1 and let a and b be nonzero elements of R. A least common multiple of a and b is an element $\ell \in R$ such that

- a divides ℓ and b divides ℓ; and
- if a divides ℓ^{\prime} and b divides ℓ^{\prime}, then ℓ divides ℓ^{\prime}.
(a) Prove that if d is a greatest common divisor of a and b, then $\frac{a b}{d}$ is a least common multiple of a and b.
(b) Let F be a field. Show that any two nonzero polynomials $p(x), q(x) \in F[x]$ have a least common multiple $m(x)$. Prove that $(p(x)) \cap(q(x))$ is the principal ideal generated by $m(x)$.

3 Consider the polynomials

$$
f(x)=x^{10}+x^{5}+1 \quad \text { and } \quad g(x)=x^{6}-1
$$

in $\mathbb{Q}[x]$.
(a) Use the Euclidean algorithm to find a greatest common divisor of $f(x)$ and $g(x)$. Write the greatest common divisor in the form

$$
a(x) f(x)+b(x) g(x)
$$

for some $a(x), b(x) \in \mathbb{Q}[x]$.
(You may omit a proof that the Euclidean algorithm is valid in $F[x]$. It is essentially identical to the proof used for \mathbb{Z}.)
(b) Find a least common multiple of $f(x)$ and $g(x)$.
(c) Describe the ideals $\left(x^{10}+x^{5}+1, x^{6}-1\right)$ and $\left(x^{10}+x^{5}+1\right) \cap\left(x^{6}-1\right)$.

4 Let F be a field, and let $R \subseteq F[x]$ be the subset of all polynomials whose coefficient of x is equal to 0 .
(a) Prove that R is a subring of $F[x]$ and that R is an integral domain.
(b) Show that the constant polynomial 1 is a greatest common divisor of x^{2} and x^{3} in R.
(c) Show that there is no element of R which is a greatest common divisor of x^{5} and x^{6}.

