1 In this assignment, and throughout the rest of the semester, we will adopt the notation $\mathbb{F}_p = \{0, 1, \dots, p-1\}$ to denote the field of order *p*. We had previously called this field \mathbb{Z}_p or $\mathbb{Z}/p\mathbb{Z}$.

- (a) Prove that every element of \mathbb{F}_p has a unique *p*th root in \mathbb{F}_p . That is, if $a \in \mathbb{F}_p$, then there exists exactly one element $b \in \mathbb{F}_p$ such that $b^p = a$. [HINT: Consider the map $a \mapsto a^p$.]
- (b) Let $a \in \mathbb{F}_p$. Prove that the polynomial $x^p + a$ is reducible in $\mathbb{F}_p[x]$. Factor it as a product of irreducible polynomials.

2 An element *a* in a field *F* is called a **primitive** *n***th root of unity** if *n* is the smallest positive integer such that $a^n = 1$. For example, *i* is a primitive 4th root of unity in \mathbb{C} , whereas -1 is not a primitive 4th root of unity (even though $(-1)^4 = 1$).

- (a) Find all primitive 4th roots of unity in \mathbb{F}_5 .
- (b) Find all primitive 3rd roots of unity in \mathbb{F}_7 .
- (c) Find all primitive 6th roots of unity in \mathbb{F}_7 .
- (d) Use Lagrange's Theorem to prove that if *n* does not divide p 1, then \mathbb{F}_p contains no *n*th roots of unity. [In fact, the converse is true: If *n* divides p 1, then \mathbb{F}_p contains a (primitive) *p*th root of unity. We will prove this later.]

3

- (a) List all monic irreducible polynomials of degree 2 in $\mathbb{F}_2[x]$.
- (b) List all monic irreducible polynomials of degree 3 in $\mathbb{F}_2[x]$.
- (c) List all monic irreducible polynomials of degree 4 in $\mathbb{F}_2[x]$.

4 Factor the following polynomials as a product of irreducible polynomials in F₅[x].
(a) x³ + x² + x + 1
(b) x⁴ + 4x² + 3
(c) x⁵ + 2x⁴ + 3x³ + 3x² + 4x + 2