1 In this assignment, and throughout the rest of the semester, we will adopt the notation $\mathbb{F}_{p}=\{0,1, \ldots, p-1\}$ to denote the field of order p. We had previously called this field \mathbb{Z}_{p} or $\mathbb{Z} / p \mathbb{Z}$.
(a) Prove that every element of \mathbb{F}_{p} has a unique p th root in \mathbb{F}_{p}. That is, if $a \in \mathbb{F}_{p}$, then there exists exactly one element $b \in \mathbb{F}_{p}$ such that $b^{p}=a$. [HINT: Consider the map $a \mapsto a^{p}$.]
(b) Let $a \in \mathbb{F}_{p}$. Prove that the polynomial $x^{p}+a$ is reducible in $\mathbb{F}_{p}[x]$. Factor it as a product of irreducible polynomials.

2 An element a in a field F is called a primitive nth root of unity if n is the smallest positive integer such that $a^{n}=1$. For example, i is a primitive 4 th root of unity in \mathbb{C}, whereas -1 is not a primitive 4 th root of unity (even though $(-1)^{4}=1$).
(a) Find all primitive 4 th roots of unity in \mathbb{F}_{5}.
(b) Find all primitive 3rd roots of unity in \mathbb{F}_{7}.
(c) Find all primitive 6th roots of unity in \mathbb{F}_{7}.
(d) Use Lagrange's Theorem to prove that if n does not divide $p-1$, then \mathbb{F}_{p} contains no nth roots of unity. [In fact, the converse is true: If n divides $p-1$, then \mathbb{F}_{p} contains a (primitive) p th root of unity. We will prove this later.]

3
(a) List all monic irreducible polynomials of degree 2 in $\mathbb{F}_{2}[x]$.
(b) List all monic irreducible polynomials of degree 3 in $\mathbb{F}_{2}[x]$.
(c) List all monic irreducible polynomials of degree 4 in $\mathbb{F}_{2}[x]$.

4 Factor the following polynomials as a product of irreducible polynomials in $\mathbb{F}_{5}[x]$.
(a) $x^{3}+x^{2}+x+1$
(b) $x^{4}+4 x^{2}+3$
(c) $x^{5}+2 x^{4}+3 x^{3}+3 x^{2}+4 x+2$

