1 The rational root test

(a) Let

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in \mathbb{Z}[x] \qquad (a_n \neq 0),$$

and suppose $p(\alpha) = 0$ for some $\alpha \in \mathbb{Q}$. Prove that if $\alpha = \frac{r}{s}$ is in lowest terms (i.e. $r, s \in \mathbb{Z}$ are relatively prime), then r divides a_0 and s divides a_n .

- (b) Use part (a) to quickly find a rational root of $9x^5 + 8x^3 + 2x^2 x + 2$.
- (c) Use part (a) to show that $2x^3 7x + 3$ is irreducible in $\mathbb{Q}[x]$.

2 Let *p* be a prime number. Show that the polynomial

 $x^n - p$

is irreducible over \mathbb{Q} for any integer $n \geq 1$.

3 Show that the polynomial

 $(x-1)(x-2)\cdots(x-n)-1$

is irreducible over \mathbb{Q} for any integer $n \ge 1$. [HINT: Suppose it factors as f(x)g(x) and consider the polynomial f(x) + g(x) at the values x = 1, ..., n.]

4 Let *n* be a positive integer. Prove that the polynomial

$$1 + x + x^2 + \dots + x^{n-1}$$

is irreducible in $\mathbb{Q}[x]$ if and only if *n* is prime.