1 The rational root test
(a) Let

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{Z}[x] \quad\left(a_{n} \neq 0\right),
$$

and suppose $p(\alpha)=0$ for some $\alpha \in \mathbb{Q}$. Prove that if $\alpha=\frac{r}{s}$ is in lowest terms (i.e. $r, s \in \mathbb{Z}$ are relatively prime), then r divides a_{0} and s divides a_{n}.
(b) Use part (a) to quickly find a rational root of $9 x^{5}+8 x^{3}+2 x^{2}-x+2$.
(c) Use part (a) to show that $2 x^{3}-7 x+3$ is irreducible in $\mathrm{Q}[x]$.

2 Let p be a prime number. Show that the polynomial

$$
x^{n}-p
$$

is irreducible over \mathbb{Q} for any integer $n \geq 1$.

3 Show that the polynomial

$$
(x-1)(x-2) \cdots(x-n)-1
$$

is irreducible over \mathbb{Q} for any integer $n \geq 1$. [HINT: Suppose it factors as $f(x) g(x)$ and consider the polynomial $f(x)+g(x)$ at the values $x=1, \ldots, n$.]

4 Let n be a positive integer. Prove that the polynomial

$$
1+x+x^{2}+\cdots+x^{n-1}
$$

is irreducible in $Q[x]$ if and only if n is prime.

