1 Prove that $Q(\sqrt{5}, \sqrt{7})=\mathbb{Q}(\sqrt{5}+\sqrt{7})$.

2 The following complex numbers are algebraic over \mathbb{Q}. Find the minimal polynomial for each over Q.
(a) $\sqrt{3}+\sqrt{2}$
(b) $\sqrt{3+i \sqrt{2}}$
(c) $\sqrt{3+2 \sqrt{2}}$

3 Let E be an extension field of a finite field F, where F has q elements. Let $\alpha \in E$ be algebraic over F of degree n. Prove that $F(\alpha)$ has q^{n} elements.

4 Let $\alpha=e^{2 \pi i / 5}=\cos (2 \pi / 5)+i \sin (2 \pi / 5) \in \mathbb{C}$.
(a) Find the minimal polynomial of α over \mathbb{Q}.
(b) For which positive integer k is $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{k}\right\}$ a basis for $\mathbb{Q}(\alpha)$ as a vector space over \mathbb{Q} ? Express $\alpha^{-1}=e^{-2 \pi i / 5}$ as a \mathbb{Q}-linear combination of basis elements.
(c) Find the minimal polynomial for $2 \cos (2 \pi / 5)$ over \mathbb{Q}. [HINT: Consider $\alpha+\alpha^{-1}$].
(d) Use the polynomial from part (c) to find a simple expression for $\cos (2 \pi / 5)$.

