1 Prove that $\mathbb{Q}(\sqrt{5}, \sqrt{7}) = \mathbb{Q}(\sqrt{5} + \sqrt{7})$.

2 The following complex numbers are algebraic over \mathbb{Q} . Find the minimal polynomial for each over \mathbb{Q} .

(a)
$$\sqrt{3} + \sqrt{2}$$

(b) $\sqrt{3 + i\sqrt{2}}$

(c)
$$\sqrt{3+2\sqrt{2}}$$

3 Let *E* be an extension field of a finite field *F*, where *F* has *q* elements. Let $\alpha \in E$ be algebraic over *F* of degree *n*. Prove that $F(\alpha)$ has q^n elements.

- 4 Let $\alpha = e^{2\pi i/5} = \cos(2\pi/5) + i\sin(2\pi/5) \in \mathbb{C}$.
 - (a) Find the minimal polynomial of α over \mathbb{Q} .
 - (b) For which positive integer *k* is $\{1, \alpha, \alpha^2, ..., \alpha^k\}$ a basis for $\mathbb{Q}(\alpha)$ as a vector space over \mathbb{Q} ? Express $\alpha^{-1} = e^{-2\pi i/5}$ as a \mathbb{Q} -linear combination of basis elements.
 - (c) Find the minimal polynomial for $2\cos(2\pi/5)$ over Q. [HINT: Consider $\alpha + \alpha^{-1}$].
 - (d) Use the polynomial from part (c) to find a simple expression for $\cos(2\pi/5)$.