1 Consider the polynomial $f(x)=1-x+x^{2}-x^{3}+x^{4} \in \mathbb{Q}[x]$.
(a) Prove that $f(x)$ is irreducible over \mathbb{Q}. [HINT: $f(x)=\Phi_{5}(-x)$]
(b) Let α be a root of $f(x)$ in an extension field, and consider the simple extension $\mathbb{Q}(\alpha)$. What is the dimension of $\mathbb{Q}(\alpha)$ as a vector space over \mathbb{Q} ? Use the element α to write down a basis of $Q(\alpha)$ as a \mathbb{Q}-vector space.
(c) Write down a multiplication table for the elements of your basis from part (b).
(d) Use the multiplication table from part (c) to write the following elements as Qlinear combinations of basis elements:
i. $\left(1+\alpha^{2}\right)^{3}$
ii. α^{-1}
iii. $\frac{\alpha^{3}+\alpha}{3+\alpha^{2}}$

2 Consider the polynomial $g(x)=x^{3}+2 x+2 \in \mathbb{F}_{3}[x]$.
(a) Prove that $g(x)$ is irreducible over \mathbb{F}_{3}.
(b) Let β be a root of $g(x)$ in an extension field, and consider the simple extension $\mathbb{F}_{3}(\beta)$. What is the dimension of $\mathbb{F}_{3}(\beta)$ as a vector space over \mathbb{F}_{3} ? Use the element β to write down a basis of $\mathbb{F}_{3}(\beta)$ as an \mathbb{F}_{3}-vector space.
(c) Write down a multiplication table for the elements of your basis from part (b).
(d) Show that $g(x)$ factors in $\mathbb{F}_{3}(\beta)[x]$ as a product of 3 distinct linear factors.
(e) Show that $h(x)=x^{3}+2 x+1$ is also irreducible in $\mathbb{F}_{3}[x]$. Find a factorization of $h(x)$ as a product of linear factors in $\mathbb{F}_{3}(\beta)[x]$.

3 Suppose that E is an extension of a field F and that $[E: F]$ is a prime number. Show that E is a simple extension of F.

4 Let $\omega=e^{2 \pi i / 3} \in \mathbb{C}$ be a primitive third root of unity and let $\sqrt[3]{2}$ be the real cube root of 2. Compute $[\mathbb{Q}(\omega, \sqrt[3]{2}): \mathbb{Q}]$.

