- 1 Consider the polynomial $f(x) = 1 x + x^2 x^3 + x^4 \in \mathbb{Q}[x]$.
 - (a) Prove that f(x) is irreducible over Q. [HINT: $f(x) = \Phi_5(-x)$]
 - (b) Let α be a root of f(x) in an extension field, and consider the simple extension $\mathbb{Q}(\alpha)$. What is the dimension of $\mathbb{Q}(\alpha)$ as a vector space over \mathbb{Q} ? Use the element α to write down a basis of $\mathbb{Q}(\alpha)$ as a \mathbb{Q} -vector space.
 - (c) Write down a multiplication table for the elements of your basis from part (b).
 - (d) Use the multiplication table from part (c) to write the following elements as Q-linear combinations of basis elements:

i.
$$(1 + \alpha^2)^3$$

ii. α^{-1}
iii. $\frac{\alpha^3 + \alpha}{3 + \alpha^2}$

- **2** Consider the polynomial $g(x) = x^3 + 2x + 2 \in \mathbb{F}_3[x]$.
 - (a) Prove that g(x) is irreducible over \mathbb{F}_3 .
 - (b) Let β be a root of g(x) in an extension field, and consider the simple extension 𝔽₃(β). What is the dimension of 𝔽₃(β) as a vector space over 𝔽₃? Use the element β to write down a basis of 𝔽₃(β) as an 𝔽₃-vector space.
 - (c) Write down a multiplication table for the elements of your basis from part (b).
 - (d) Show that g(x) factors in $\mathbb{F}_3(\beta)[x]$ as a product of 3 distinct linear factors.
 - (e) Show that $h(x) = x^3 + 2x + 1$ is also irreducible in $\mathbb{F}_3[x]$. Find a factorization of h(x) as a product of linear factors in $\mathbb{F}_3(\beta)[x]$.

3 Suppose that *E* is an extension of a field *F* and that [E : F] is a prime number. Show that *E* is a simple extension of *F*.

4 Let $\omega = e^{2\pi i/3} \in \mathbb{C}$ be a primitive third root of unity and let $\sqrt[3]{2}$ be the real cube root of 2. Compute $[\mathbb{Q}(\omega, \sqrt[3]{2}) : \mathbb{Q}]$.