1 Let *F* be a field and let α be algebraic over *F*. Prove that if $E \supseteq F$ is any field extension and

 $\varphi \colon F(\alpha) \to E$

is a homomorphism such that $\varphi(a) = a$ for every $a \in F$, then φ is completely determined by the element $\varphi(\alpha) \in E$.

2 Let $E \supseteq F$ be a field extension, and let $p(x) \in F[x]$ be irreducible over F. Let $S \subseteq E$ be the (finite) set of all roots of p(x) which are elements of E. Show that if $\sigma \in Aut(E/F)$ and $\alpha \in S$, then $\sigma(\alpha) \in S$. Conclude that there is a group action of Aut(E/F) on S given by

 $\sigma \cdot \alpha = \sigma(\alpha).$

- **3** Let $G = \operatorname{Aut}(\mathbb{Q}(\sqrt{5}, \sqrt{7})/\mathbb{Q}).$
 - (a) Compute $[\mathbb{Q}(\sqrt{5},\sqrt{7}):\mathbb{Q}]$ and give a basis for $\mathbb{Q}(\sqrt{5},\sqrt{7})$ as a vector space over \mathbb{Q} .
 - (b) If $\sigma \in G$, then what are the possible values of $\sigma(\sqrt{5})$? What are the possible values of $\sigma(\sqrt{7})$?
 - (c) Completely describe the group *G*.