1 The formal derivative. Let *F* be a field, and let

 $D: F[x] \to F[x]$

be the formal differentiation map. That is,

 $D(a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1}.$

We call this *formal* differentiation because we are just following the power rule here; there is no need to invoke (or even define) limits!

- (a) Show that *D* is a homomorphism from the additive group (F[x], +) to itself.
- (b) Suppose *F* has characteristic zero. Find ker *D* and im *D*.
- (c) Suppose *F* has characteristic *p*, where *p* is a prime. Find ker *D* and im *D*.
- (d) Show that *D* is *not* a ring homomorphism.

2 Let *F* be a field, and let $D: F[x] \to F[x]$ be the formal differentiation map as in the previous problem. For $f(x) \in F[x]$, we let f'(x) = D(f(x)).

(a) Prove that

$$D(af(x)) = af'(x)$$

for all $a \in F$ and $f(x) \in F[x]$.

(b) Prove the **product rule**: If $f(x), g(x) \in F[x]$, then

$$D(f(x)g(x)) = f(x)g'(x) + f'(x)g(x).$$

[HINT: Proceed by induction on the degree of f(x)g(x).]

(c) Let *k* be a positive integer. Prove that

$$D(f(x)^k) = k f(x)^{k-1} f'(x)$$

for all $f(x) \in F[x]$.

3 Let *F* be a field, $p(x) \in F[x]$ a polynomial, and $E \supseteq F$ a splitting field extension for p(x) over *F*. We say that $\alpha \in E$ is a **repeated root** of p(x) if $(x - \alpha)^k$ divides p(x) for some integer k > 1. (The largest *k* such that $(x - \alpha)^k$ divides p(x) is called the **multiplicity** of the root α .)

- (a) Prove that α is a repeated root of p(x) if and only if α is a root of p(x) and α is also a root of p'(x).
- (b) Prove that α is a repeated root of p(x) if and only if the minimal polynomial of α over *F* is a common factor of p(x) and p'(x).