1 Find a splitting field $E \supseteq \mathbb{Q}$ for each of the following polynomials over $\mathbb{Q}$. In each case, compute the degree $[E: \mathbb{Q}]$.
(a) $x^{4}+1$
(b) $x^{4}+4$
(c) $\left(x^{4}+1\right)\left(x^{4}+4\right)$
(d) $\left(x^{4}-1\right)\left(x^{4}+4\right)$

HINT: Note that $\zeta=e^{\pi i / 4} \in \mathbb{C}$ is a complex number with the property that $\zeta^{2}=i$.

2 The complex numbers $i \sqrt{5}$ and $1+i \sqrt{5}$ are roots of the quartic

$$
f(x)=x^{4}-2 x^{3}+11 x^{2}-10 x+30 \in \mathbb{Q}[x]
$$

Let $E \supseteq \mathbb{Q}$ be a splitting field for $f(x)$. Does there exist an automorphism $\sigma \in \operatorname{Aut}(E / \mathbb{Q})$ such that $\sigma(i \sqrt{5})=1+i \sqrt{5}$ ?

3 Which of the following extensions are normal?
(a) $\mathbb{Q}(i) \supseteq \mathbb{Q}$
(b) $Q(\sqrt[3]{7}) \supseteq \mathbb{Q}$
(c) $\mathbb{Q}(\omega \sqrt[3]{7}) \supseteq \mathbb{Q}$, where $\omega=e^{2 \pi i / 3} \in \mathbb{C}$
(d) $\mathbb{Q}(\omega, \sqrt[3]{7}) \supseteq \mathbb{Q}$, where $\omega=e^{2 \pi i / 3} \in \mathbb{C}$

