1 Find a splitting field $E \supseteq \mathbb{Q}$ for each of the following polynomials over \mathbb{Q} . In each case, compute the degree $[E : \mathbb{Q}]$.

- (a) $x^4 + 1$
- (b) $x^4 + 4$

(c)
$$(x^4+1)(x^4+4)$$

(d)
$$(x^4 - 1)(x^4 + 4)$$

HINT: Note that $\zeta = e^{\pi i/4} \in \mathbb{C}$ is a complex number with the property that $\zeta^2 = i$.

2 The complex numbers $i\sqrt{5}$ and $1 + i\sqrt{5}$ are roots of the quartic

$$f(x) = x^4 - 2x^3 + 11x^2 - 10x + 30 \in \mathbb{Q}[x].$$

Let $E \supseteq \mathbb{Q}$ be a splitting field for f(x). Does there exist an automorphism $\sigma \in \operatorname{Aut}(E/\mathbb{Q})$ such that $\sigma(i\sqrt{5}) = 1 + i\sqrt{5}$?

3 Which of the following extensions are normal?
(a) Q(i) ⊇ Q
(b) Q(³√7) ⊇ Q
(c) Q(ω³√7) ⊇ Q, where ω = e^{2πi/3} ∈ C
(d) Q(ω, ³√7) ⊇ Q, where ω = e^{2πi/3} ∈ C