I collaborated with Ferdinand Georg Frobenius and Emmy Noether

1 Let G be a group and $a, b \in G$. Show that $(a b)^{-1}=b^{-1} a^{-1}$.
Proof. We must show that

$$
(a b) \cdot\left(b^{-1} a^{-1}\right)=e=\left(b^{-1} a^{-1}\right) \cdot(a b)
$$

By associativity and the definition of inverses, we have

$$
(a b)\left(b^{-1} a^{-1}\right)=a\left(b b^{-1}\right) a^{-1}=a e a^{-1}=a a^{-1}=e
$$

Similarly,

$$
\left(b^{-1} a^{-1}\right)(a b)=b^{-1}\left(a^{-1} a\right) b=b^{-1} e b=b^{-1} b=e,
$$

as desired.

2 Give an example of a group G for which the set

$$
T=\{g \in G| | g \mid<\infty\}
$$

of torsion elements is not a subgroup.
Solution. Let $G=\mathrm{GL}_{2}(\mathbb{R})$ be the group of invertible 2×2 matrices with entries in \mathbb{R}. Let

$$
A=\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

It is easily checked that $A^{2}=I_{2}$ and $B^{2}=I_{2}$, and therefore $A^{-1}=A$ and $B^{-1}=B$. This means that $A, B \in \mathrm{GL}_{2}(\mathbb{R})$ and, moreover, $|A|=|B|=2$, so that $A, B \in T$. However,

$$
A B=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)
$$

and hence

$$
(A B)^{n}=\left(\begin{array}{cc}
1 & (-1)^{n} \\
0 & 1
\end{array}\right)
$$

is not equal to I_{2} for any integer $n>0$. Thus $A B \notin T$, showing that T is not closed under multiplication. Therefore T is not a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$.

