THE GEOMETRY OF MATROIDS LECTURE 1 EXERCISES

1. The rank function

Let M be a matroid on ground set E. Define the **rank function** of M to be the function

$$\operatorname{rk}_M \colon 2^E \to \mathbb{Z}$$
$$S \mapsto \max_{\substack{I \in \mathcal{I}(M) \\ \text{s.t. } I \subset S}} |I|;$$

That is, $\operatorname{rk}_M(S)$ is the cardinality of the largest independent subset of S.

- (a) Check that $\operatorname{rk}_M(E)$ is equal to $\operatorname{rk}(M)$, the rank of M.
- (b) Show that

$$\operatorname{rk}_M(S) = \max_{B \in \mathcal{B}(M)} |B \cap S|,$$

where the maximum is taken over all bases B of M.

- (c) Let \mathcal{A} be a vector configuration. Describe the rank function $\operatorname{rk}_{\mathcal{M}(\mathcal{A})}$.
- (d) Let G be a graph. Describe the rank function $\operatorname{rk}_{M(G)}$.

2. Graphic and representable matroids

We say that a matroid M is

- graphic if $M \cong M(G)$ for some graph G;
- *K*-representable if $M \cong M(\mathcal{A})$ for some configuration \mathcal{A} in a vector space over the field K;
- **representable** if *M* is *K*-representable for some field *K*;
- regular if M is K-representable for every field K.

Prove that every graphic matroid is regular.

3. ***The basis axioms**

- (a) Let M be a matroid on E, and let $\mathcal{B} = \mathcal{B}(M)$ be its set of bases. Prove that \mathcal{B} satisfies the following:
 - (B1) \mathcal{B} is nonempty.
 - (B2) If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \setminus B_2$, then there exists $y \in B_2 \setminus B_1$ such that $(B_1 \setminus \{x\}) \cup \{y\} \in \mathcal{B}$.
- (b) Conversely, suppose that $\mathcal{B} \subseteq 2^E$ is a collection of subsets satisfying conditions **(B1)** and **(B2)**. Prove that there is a matroid M on ground set E such that \mathcal{B} is the set of bases of M.