THE GEOMETRY OF MATROIDS LECTURE 2 EXERCISES

1. Independent sets from circuits

Let E be a finite set. Let $\mathcal{C} \subseteq 2^{E}$ be a collection of subsets of E satisfying conditions (C1)-(C3), and define

$$
\mathcal{I}=\{I \subseteq E \mid \text { no subset of } I \text { is in } \mathcal{C}\}
$$

Prove that $C \subseteq E$ is a minimal subset of E not contained in \mathcal{I} if and only if $C \in \mathcal{C}$.

2. Independent sets, bases, and circuits via the rank function

Let M be a matroid on ground set E and let $S \subseteq E$. Recall that the rank of S, denoted $\mathrm{rk}_{M}(S)$, is the cardinality of the largest independent subset of S.
(a) Prove that S is independent if and only if $\operatorname{rk}_{M}(S)=|S|$.
(b) Prove that S is a basis if and only if

$$
\operatorname{rk}_{M}(S)=|S|=\operatorname{rk}(M)
$$

[Recall that $\operatorname{rk}(M)=\operatorname{rk}_{M}(E)$.]
(c) Prove that S is a circuit if and only if S is nonempty and

$$
\operatorname{rk}_{M}(S)=\operatorname{rk}_{M}(S \backslash e)=|S|-1
$$

for every $e \in S$.

3. \star Fundamental circuits

Let M be a matroid on ground set E.
(a) Show that for each basis B of M and element $e \in E \backslash B$, there is a unique circuit contained in $B \cup\{e\}$ and that this circuit must contain e. This circuit, denoted $C(e, B)$, is the fundamental circuit of e with respect to B.
(b) Let C be a circuit of M and $e \in C$. Show that there exists a basis B of M such that $C=C(e, B)$; that is, every circuit can be expressed as a fundamental circuit.
(c) Let B be a basis of $M, e \in E \backslash B$, and $f \in B$. Prove that $f \in C(e, B)$ if and only if $(B \backslash\{f\}) \cup\{e\}$ is a basis of M.

