THE GEOMETRY OF MATROIDS LECTURE 2 EXERCISES

1. Independent sets from circuits

Let \overline{E} be a finite set. Let $\mathcal{C} \subseteq 2^{E}$ be a collection of subsets of E satisfying conditions (C1)–(C3), and define

 $\mathcal{I} = \{ I \subseteq E \mid \text{no subset of } I \text{ is in } \mathcal{C} \}.$

Prove that $C \subseteq E$ is a minimal subset of E not contained in \mathcal{I} if and only if $C \in \mathcal{C}$.

2. Independent sets, bases, and circuits via the rank function

Let M be a matroid on ground set E and let $S \subseteq E$. Recall that the rank of S, denoted $\operatorname{rk}_M(S)$, is the cardinality of the largest independent subset of S.

(a) Prove that S is independent if and only if $\operatorname{rk}_M(S) = |S|$.

r

(b) Prove that S is a basis if and only if

$$k_M(S) = |S| = \operatorname{rk}(M).$$

[Recall that $\operatorname{rk}(M) = \operatorname{rk}_M(E)$.]

(c) Prove that S is a circuit if and only if S is nonempty and

$$\operatorname{rk}_M(S) = \operatorname{rk}_M(S \setminus e) = |S| - 1$$

for every $e \in S$.

3. ***Fundamental circuits**

Let M be a matroid on ground set E.

- (a) Show that for each basis B of M and element $e \in E \setminus B$, there is a unique circuit contained in $B \cup \{e\}$ and that this circuit must contain e. This circuit, denoted C(e, B), is the **fundamental circuit of** e with respect to B.
- (b) Let C be a circuit of M and $e \in C$. Show that there exists a basis B of M such that C = C(e, B); that is, every circuit can be expressed as a fundamental circuit.
- (c) Let B be a basis of $M, e \in E \setminus B$, and $f \in B$. Prove that $f \in C(e, B)$ if and only if $(B \setminus \{f\}) \cup \{e\}$ is a basis of M.