THE GEOMETRY OF MATROIDS LECTURE 5 EXERCISES

1. Uniform matroids

Let $r \leq n$ be non-negative integers. Let $U_{r,n}$ be the **uniform matroid of rank** r on n elements, which has ground set

$$E(U_{r,n}) = [n] := \{1, 2, \dots, n\}$$

and independent sets

$$\mathcal{I}(U_{r,n}) = \{ I \subseteq [n] \mid |I| \le r \}.$$

Find the bases, circuits, rank function, closure operator, and flats of $U_{r,n}$.

2. Are uniform matroids graphic?

- (a) Show that $U_{2,4}$ is not graphic.
- (b) Find all pairs $(r, n), 0 \le r \le n$, such that $U_{r,n}$ is graphic.

3. Are uniform matroids representable?

- (a) Prove that $U_{2,4}$ is representable over a field K if and only if $|K| \ge 3$.
- (b) Fix $n \ge 2$. Find necessary and sufficient conditions on the field K for $U_{2,n}$ to be K-representable.
- (c) Prove that a uniform matroid is representable any infinite field.
- (d) For each $0 \le r \le n$, explicitly determine the fields K over which $U_{r,n}$ is representable. Publish your results.

4. ***Loops**

Let M be a matroid on ground set E, and let $e \in E$. Prove the equivalence of the following statements.

- (a) $\{e\}$ is a circuit.
- (b) e is not contained in any independent set.
- (c) e is not contained in any basis.
- (d) $rk(\{e\}) = 0.$
- (e) $e \in cl(\emptyset)$.
- (f) $e \in cl(X)$ for every $X \subseteq E$.
- (g) e is contained in every flat.

We say that e is a **loop** of M if it satisfies any of the equivalent conditions (a)–(g).