THE GEOMETRY OF MATROIDS LECTURE 6 EXERCISES

1. Parallel elements

Let M be a matroid on ground set E, and let $e, f \in E$. We say that e and f are parallel in M if $e \neq f$ and $\{e, f\}$ is a circuit.
(a) Prove that distinct elements e and f are parallel in M if and only if e and f are not loops and for each basis B containing $e,(B \backslash e) \cup f$ is also a basis.
(b) Define a relation \sim on E by

$$
e \sim f \quad \Longleftrightarrow \quad e=f \text { or } e \text { and } f \text { are parallel in } M .
$$

Prove that \sim is an equivalence relation on E. An equivalence class of this relation is called a parallel class of M.

2. Coloops

Let M be a matroid on ground set E, and let $e \in E$. Prove the equivalence of the following statements.
(a) e is not contained in any circuit.
(b) For every independent set $I, I \cup e$ is independent.
(c) e is contained in every basis.
(d) If $X \subseteq E$ is any subset with $e \notin X$, then $\operatorname{rk}(X \cup e)=\operatorname{rk}(X)+1$.
(e) $\operatorname{cl}(E \backslash e)=E \backslash e$.
(f) If $X \subseteq E$ is any subset with $e \notin X$, then $e \notin \operatorname{cl}(X)$.
(g) For every flat $F, F \backslash e$ is a flat.

We say that e is a coloop (or isthmus) of M if it satisfies any of the equivalent conditions (a)-(g).

