THE GEOMETRY OF MATROIDS LECTURE 8 EXERCISES

1. Representability of F_{7} and F_{7}^{-}

Let K be any field.
(a) Let \mathcal{A} be the configuration in K^{3} consisting of the seven column vectors of the matrix

$$
\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right] .
$$

Prove that $M(\mathcal{A}) \cong F_{7}$ if char $K=2$ and $M(\mathcal{A}) \cong F_{7}^{-}$if char $K \neq 2$.
(b) Conversely, suppose that $\mathcal{A}=\left\{v_{1}, \ldots, v_{7}\right\}$ is a configuration in a K-vector space V such that $M(\mathcal{A}) \cong F_{7}$ (we may assume $\operatorname{dim} V=3$). Prove that char $K=2$. HINTS:

- By definition of F_{7}, the vectors in \mathcal{A} are pairwise linearly independent, and the span of any two distinct vectors in \mathcal{A} contains a unique third vector in \mathcal{A}.
- We may freely replace any vector in \mathcal{A} by a nonzero scalar multiple.
- Without loss of generality, $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis of V. We may choose coordinates so that $v_{1}=(1,0,0), v_{2}=(0,1,0)$, and $v_{3}=(0,0,1)$.
- Now, show that we may assume the vectors in \mathcal{A} are the columns of the matrix

$$
\left[\begin{array}{ccccccc}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & \alpha & 0 & 1 & \delta \\
0 & 0 & 1 & 0 & \beta & \gamma & \gamma \delta
\end{array}\right]
$$

where $\alpha, \beta, \gamma, \delta \in K$ are nonzero constants.

- Show that $\beta=\gamma \delta, \delta=\alpha$, and $\beta+\alpha \gamma=0$.
(c) Modify the argument from (b) to show that if F_{7}^{-}is K-representable, then char $K \neq 2$.

2. The Deathly Hallows "matroid"

Show that the following diagram is not the geometric representation of a matroid.

3. \star Geometric representation of $M\left(K_{4}\right)$

Let F_{7} be the Fano matroid, and let e be any element of its ground set. By removing the point e from the geometric representation of F_{7}, we obtain a new matroid which we shall denote $F_{7} \backslash e$ (called the deletion of e from F_{7}).
(a) Verify that, depending on the choice of e, the geometric representation of $F_{7} \backslash e$ is one of the following.

(b) Prove that the three geometric representations in part (a) in fact define isomorphic matroids.
(c) Show that $F_{7} \backslash e \cong M\left(K_{4}\right)$ for each e in the ground set of F_{7}.

