THE GEOMETRY OF MATROIDS LECTURE 8 EXERCISES

1. Representability of F_7 and F_7^-

Let K be any field.

(a) Let \mathcal{A} be the configuration in K^3 consisting of the seven column vectors of the matrix

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}.$$

Prove that $M(\mathcal{A}) \cong F_7$ if char K = 2 and $M(\mathcal{A}) \cong F_7^-$ if char $K \neq 2$.

- (b) Conversely, suppose that $\mathcal{A} = \{v_1, \ldots, v_7\}$ is a configuration in a K-vector space V such that $M(\mathcal{A}) \cong F_7$ (we may assume dim V = 3). Prove that char K = 2. HINTS:
 - By definition of F_7 , the vectors in \mathcal{A} are pairwise linearly independent, and the span of any two distinct vectors in \mathcal{A} contains a unique third vector in \mathcal{A} .
 - We may freely replace any vector in \mathcal{A} by a nonzero scalar multiple.
 - Without loss of generality, $\{v_1, v_2, v_3\}$ is a basis of V. We may choose coordinates so that $v_1 = (1, 0, 0), v_2 = (0, 1, 0), and v_3 = (0, 0, 1).$
 - Now, show that we may assume the vectors in \mathcal{A} are the columns of the matrix

1	0	0	1	1	0	1	
0	1	0	α	0	1	δ	,
0	0	1	0	β	γ	$\gamma\delta$	

where $\alpha, \beta, \gamma, \delta \in K$ are nonzero constants.

- Show that $\beta = \gamma \delta$, $\delta = \alpha$, and $\beta + \alpha \gamma = 0$.
- (c) Modify the argument from (b) to show that if F_7^- is K-representable, then char $K \neq 2$.

2. The Deathly Hallows "matroid"

Show that the following diagram is not the geometric representation of a matroid.

LECTURE 8 EXERCISES

3. *Geometric representation of $M(K_4)$

Let F_7 be the Fano matroid, and let e be any element of its ground set. By removing the point e from the geometric representation of F_7 , we obtain a new matroid which we shall denote $F_7 \setminus e$ (called the **deletion** of e from F_7).

(a) Verify that, depending on the choice of e, the geometric representation of $F_7 \setminus e$ is one of the following.

- (b) Prove that the three geometric representations in part (a) in fact define isomorphic matroids.
- (c) Show that $F_7 \setminus e \cong M(K_4)$ for each e in the ground set of F_7 .

 $\mathbf{2}$