## THE GEOMETRY OF MATROIDS LECTURE 9 EXERCISES

## 1. Graph connectivity is not matroidal

Let $H_{1}$ and $H_{2}$ be distinct connected components of a finite graph $G$, and let $v_{i}$ be any vertex in $H_{i}(i=1,2)$. Let $G^{\prime}$ be the graph obtained from $G$ by fusing the vertices $v_{1}$ and $v_{2}$ into a single vertex $v$. Prove that $M(G)=M\left(G^{\prime}\right)$. Conclude that every graphic matroid is the matroid of a connected graph.

## 2. Planar duality and matroid duality

Let $G$ be the graph on edge set $E(G)=[8]=\{1, \ldots, 8\}$ pictured below.

(a) Draw the planar dual $G^{*}$ of $G$. Observe that there is a natural identification of the edge set $E\left(G^{*}\right)$ with $E(G)=[8]$.
(b) Convince yourself that $M\left(G^{*}\right)=M(G)^{*}$.
(c) Observe that $M\left(G^{*}\right)$ has three circuits of cardinality 2, eight circuits of cardinality 3 , and four circuits of cardinality 4 . Using the identification of $E\left(G^{*}\right)$ with $E(G)$, characterize the circuits of $M\left(G^{*}\right)$ in terms of the graph $G$.

## 3. $\star$ Cutsets

Let $G$ be a finite graph. Given a set of edges $X \subseteq E(G)$, let $G \backslash X$ be the subgraph of $G$ obtained by deleting all of the edges in $X$. We say that $X$ is a cutset of $G$ if $X$ is a minimal set with the property that $G \backslash X$ has more connected components than $G$.
(a) Prove that $X$ is a cutset of $G$ if and only if the complement $E(G) \backslash X$ is a hyperplane of the graphic matroid $M(G)$.
(b) Prove that $X$ is a cutset of $G$ if and only if it is a minimal subset of $E(G)$ which has a nonempty intersection with every spanning forest.
(c) Let $\mathcal{C}^{*}(G)$ denote the collection of all cutsets of $G$. Prove that $\mathcal{C}^{*}(G)$ satisfies the circuit axioms (C1), (C2), and (C1). That is, $\mathcal{C}^{*}(G)$ is the collection of circuits of a matroid on $E(G)$.

