THE GEOMETRY OF MATROIDS LECTURE 11 EXERCISES

1. The dual closure operator

Let M be a matroid on E. Let $cl = cl_M : 2^E \to 2^E$ denote the closure operator of Mand let $cl^* = cl_{M^*} : 2^E \to 2^E$ denote the closure operator of M^* . Given $X \subseteq E$ and $e \notin X$, let $Y = E \setminus (X \cup e)$. Prove that

 $\Pi M \subseteq D \text{ and } e \not\in M, \text{ for } I = D \setminus (M \cup e). \text{ I fove that}$

 $e \in cl^*(X)$ if and only if $e \notin cl(Y)$.

2. Some properties of flats

Let M be a matroid on E. Recall that $F \subseteq E$ is a **flat** of M if $cl_M(F) = F$. Let $\mathcal{F}(M) \subseteq 2^E$ denote the collection of all flats of M.

(a) Prove that M has a unique flat of rank 0, and that it is equal to

 $\operatorname{cl}(\emptyset) = \{ e \in E \mid e \text{ is a loop in } M \} = \bigcap_{F \in \mathcal{F}(M)} F.$

(b) Let $F = \{e_1, e_2, \dots, e_t\}$ be a flat of M. Prove that

 $F = \operatorname{cl} \left(\operatorname{cl}(e_1) \cup \operatorname{cl}(e_2) \cup \cdots \cup \operatorname{cl}(e_t) \right).$

(c) Let F and G be flats of M. We say that G covers F if G is a minimal flat properly containing F; that is, $F \subsetneq G$ and if $F \subseteq H \subseteq G$ for some flat H, then H = F or H = G.

Prove that if G covers F, then $\operatorname{rk}_M(G) = \operatorname{rk}_M(F) + 1$.

(d) Suppose

 $F = F_0 \subsetneq F_1 \subsetneq F_2 \subsetneq \cdots \subsetneq F_k = G$

is a chain of flats $(F_i \in \mathcal{F}(M) \text{ for all } i)$. Prove that $k \leq \operatorname{rk}(G) - \operatorname{rk}(F)$ with equality if and only if F_i covers F_{i-1} for all $i = 1, \ldots, k$.

3. \star The flat axioms

Let E be a finite set. Let $\mathcal{F} \subseteq 2^E$ be a collection of subsets. Prove that \mathcal{F} is the collection of flats of a matroid M on E if and only if \mathcal{F} satisfies the following conditions: (F1) $E \in \mathcal{F}$.

- (F2) If $F_1, F_2 \in \mathcal{F}$, then $F_1 \cap F_2 \in \mathcal{F}$.
- (F3) If $F \in \mathcal{F}$ and $\{G_1, \ldots, G_k\}$ is the set of minimal members of \mathcal{F} properly containing F (that is, the G_i are all members of \mathcal{F} which **cover** F, in the sense of Exercise 2 above), then $\{G_1 \setminus F, G_2 \setminus F, \ldots, G_k \setminus F\}$ is a partition of $E \setminus F$.