THE GEOMETRY OF MATROIDS LECTURE 14 EXERCISES

1. The lattice of flats of some matroids

For each of the matroids below, draw the Hasse diagram of the lattice of flats.
(a) $U_{0,4}$
(b) $U_{1,4}$
(c) $U_{2,4}$
(d) $U_{3,4}$
(e) $U_{4,4}$
(f) F_{7}
(g) F_{7}^{-}
(h) $M\left(K_{4}\right)$

2. The poset dual of a lattice

Let \mathcal{P} be a poset. Let \mathcal{P}^{\prime} be the poset defined by $x \leq y$ in \mathcal{P}^{\prime} if and only if $x \geq y$ in \mathcal{P}. In other words, the Hasse diagram for \mathcal{P}^{\prime} is obtained by flipping the Hasse diagram for \mathcal{P} upside-down.
(a) Prove that if \mathcal{P} is a lattice, then so is \mathcal{P}^{\prime}.
(b) Show, by examples, that if \mathcal{P} is a geometric lattice, then \mathcal{P}^{\prime} may or may not be geometric.

3. The lattice of flats of a relaxation

Let H be a circuit-hyperplane of a matroid M, and let M^{\prime} be the matroid obtained from M by relaxing H (cf. Lecture 7 Exercise 3). Describe the lattice of flats of M^{\prime} in terms of the lattice of flats of M.

