THE GEOMETRY OF MATROIDS LECTURE 18 EXERCISES

1. Minors of a direct sum

Let M_1 and M_2 be matroids on disjoint ground sets E_1 and E_2 , respectively. Let $T_1 \subseteq E_1, T_2 \subseteq E_2$, and $T = T_1 \cup T_2$. (a) Show that

$$(M_1 \oplus M_2) \setminus T = (M_1 \setminus T_1) \oplus (M_2 \setminus T_2).$$

(b) Show that

$$(M_1 \oplus M_2)/T = (M_1/T_1) \oplus (M_2/T_2).$$

2. The dual of a direct sum

Let M_1 and M_2 be matroids on disjoint ground sets. Prove that

$$(M_1 \oplus M_2)^* = M_1^* \oplus M_2^*.$$

3. *An excluded minor characterization of paving matroids

Recall that a matroid M is a **paving matroid** if $|C| \ge \operatorname{rk}(M)$ for every circuit $C \in \mathcal{C}(M)$.

- (a) Show that paving matroids form a minor-closed class. That is, every minor of a paving matroid is paving.
- (b) Show that $U_{2,2} \oplus U_{0,1}$ is the unique excluded minor for the class of paving matroids. That is, a matroid is paving if and only if it has no minor isomorphic to $U_{2,2} \oplus U_{0,1}$.