THE GEOMETRY OF MATROIDS LECTURE 19 EXERCISES

1. Truncation

Let M be a matroid on ground set E of rank $rk(M) \ge 1$. Recall that the **truncation** of M is the matroid trunc(M) on E with independent sets

$$\mathcal{I}(\operatorname{trunc}(M)) = \{ I \in \mathcal{I}(M) \mid |I| \le \operatorname{rk}(M) - 1 \}.$$

(a) Show that

$$\mathcal{B}(\operatorname{trunc}(M)) = \{I \in \mathcal{I}(M) \mid |I| = \operatorname{rk}(M) - 1\}$$

(b) Show that

$$\mathcal{C}(\operatorname{trunc}(M)) = \{ C \in \mathcal{C}(M) \mid |C| \le \operatorname{rk}(M) \} \cup \mathcal{B}(M).$$

(c) Let $X \subseteq E$. Show that

$$\operatorname{rk}_{\operatorname{trunc}(M)}(X) = \min\{\operatorname{rk}_M(X), \operatorname{rk}(M) - 1\}.$$

- (d) Describe the lattice of flats of trunc(M).
- (e) Show that trunc $(U_{r,n}) = U_{r-1,n}$ if $1 \le r \le n$.

2. Some inequalities

Let M be a matroid on ground set E. Show that the following inequalties hold for any subset $T \subseteq E$.

- (a) $\operatorname{rk}(M \setminus T) \ge \operatorname{rk}(M/T)$
- (b) $\operatorname{rk}_M(T) + \operatorname{rk}_M(E \setminus T) \ge \operatorname{rk}(M)$
- (c) $\operatorname{rk}_M(T) + \operatorname{rk}_{M^*}(T) \ge |T|$

3. ***Separators**

Let M be a matroid on ground set E, and let $T \subseteq E$. Prove that the following statements are equivalent.

(a)
$$M \setminus T = M/T$$

(b)
$$\operatorname{rk}(M \setminus T) \leq \operatorname{rk}(M/T)$$

- (c) $\operatorname{rk}_M(T) + \operatorname{rk}_M(E \setminus T) = \operatorname{rk}(M)$
- (d) $\operatorname{rk}_{M}(T) + \operatorname{rk}_{M^{*}}(T) = |T|$
- (e) If $C \in \mathcal{C}(M)$ is a circuit, then either $C \subseteq T$ or $C \subseteq E \setminus T$.
- (f) T is a union of connected components of M.
- (g) $M = M | T \oplus M \setminus T$.