THE GEOMETRY OF MATROIDS LECTURE 21 EXERCISES

1. Characteristic polynomial computations

Compute the characteristic polynomials of the following matroids.
(a) $M\left(K_{4}\right)$
(b) $M\left(K_{5}\right)$
(c) $M(G)$, where G is the graph obtained from K_{4} by deleting any edge.
(d) $U_{3, n}$ for $n \geq 3$
(e) $U_{4, n}$ for $n \geq 4$.

2. \star Positivity of the characteristic polynomial

Let M be a loopless matroid of rank r, and let w_{i} be the coefficient of q^{r-i} in the characteristic polynomial $\chi_{M}(q)$, so that

$$
\chi_{M}(q)=w_{0} q^{r}+w_{1} q^{r-1}+\cdots+w_{r-1} q+w_{r} .
$$

(a) Prove that $w_{0}=1$.
(b) Prove that the coefficients w_{i} are nonzero and alternate in sign. That is,

$$
(-1)^{i} w_{i}>0
$$

for all $0 \leq i \leq r$. Equivalently, the polynomial $(-1)^{r} \chi_{M}(-q)$ has strictly positive coefficients.
[HINT: Use the deletion/contraction formula and induct on the size of the ground set.]

3. Free coextension

Let M be a matroid on E, and let $e \notin E$. The free coextension of M by e is the matroid

$$
M \times e=\left(M^{*}+e\right)^{*}=\operatorname{lift}\left(M \oplus U_{0,1}\right)
$$

(a) Show that

$$
\begin{aligned}
\mathcal{B}(M \times e)=\{B \cup e \mid B & \in \mathcal{B}(M)\} \\
& \cup\left\{X \subseteq E \mid \operatorname{rk}_{M}(X)=\operatorname{rk}(M) \text { and } \operatorname{null}_{M}(X)=1\right\} .
\end{aligned}
$$

(b) Let $X \subseteq E$. Show that $\operatorname{rk}_{M \times e}(X \cup e)=\operatorname{rk}_{M}(X)+1$ and

$$
\mathrm{rk}_{M \times e}(X)= \begin{cases}\mathrm{rk}_{M}(X) & \text { if } X \in \mathcal{I}(M) \\ \mathrm{rk}_{M}(X)+1 & \text { if } X \notin \mathcal{I}(M)\end{cases}
$$

(c) Show that $(M \times e) / e=M$.
(d) Show that $(M \times e) \backslash e=\operatorname{lift}(M)$.

