THE GEOMETRY OF MATROIDS LECTURE 24 EXERCISES

1. Log-concavity implies unimodality

A finite sequence $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ of positive numbers is unimodal if there is some $0 \leq k \leq n$ such that

$$
a_{0} \leq a_{1} \leq \cdots \leq a_{k-1} \leq a_{k} \geq a_{k+1} \geq \cdots \geq a_{n}
$$

(a) Show that every log-concave sequence of positive numbers is unimodal.
(b) Find an example of a unimodal sequence of positive numbers which is not logconcave.

2. \star Acyclic orientations

Let G be a connected simple graph. An orientation of G is an assignment of a direction to each edge (i.e. the undirected edge $\{v, w\} \in E(G)$ becomes either $v \rightarrow w$ or $v \leftarrow w)$. A directed cycle in the resulting directed graph is a path

$$
v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k} \rightarrow v_{1} .
$$

An acyclic orientation of G is an orientation which results in no directed cycles.
(a) Let T be a tree on n vertices. Show that there are 2^{n-1} acyclic orientations of T.
(b) Let C_{n} be the cycle graph with n vertices $(n \geq 3)$. Compute the number of acyclic orientations of C_{n}.
(c) Let G be an arbitrary connected simple graph. Prove that the number of acyclic orientations of G is

$$
(-1)^{|V(G)|} \operatorname{chr}_{G}(-1) .
$$

[HINT: Use the deletion-contraction formula for chr_{G} and induct on the number of edges.]

3. Bad colorings

Let G be a graph. Given a coloring κ of the vertices of G using q colors, we say that an edge $e=\{v, w\}$ is monochromatic if its endpoints v and w are the same color. We let

$$
\operatorname{mono}(\kappa)=\{e \mid e \text { is monochromatic in } \kappa\}
$$

so that κ is a proper q-coloring if and only if $\operatorname{mono}(\kappa)=\emptyset$.
The bad coloring polynomial of G is

$$
\widetilde{\operatorname{chr}}_{G}(q, t)=\sum_{\kappa} t^{|\operatorname{mono}(\kappa)|}
$$

where the sum is taken over all colorings κ of the vertex set of G using q colors.
(a) Show that
(i) $\widetilde{\operatorname{chr}}_{G}(q, 0)=\operatorname{chr}_{G}(q)$.
(ii) $\widetilde{\operatorname{chr}}_{G}(q, 1)=q^{|V(G)|}$.
(iii) $\widetilde{\operatorname{chr}}_{G}(1, t)=t^{|E(G)|}$.
(b) Let $e \in E(G)$ be an edge. Prove that

$$
\widetilde{\operatorname{chr}}_{G}(q, t)= \begin{cases}t \widetilde{\operatorname{chr}}_{G \backslash e}(q, t) & \text { if } e \text { is a loop; } \\ \widetilde{\operatorname{chr}}_{G \backslash e}(q, t)+(t-1) \widetilde{\operatorname{chr}}_{G / e}(q, t) & \text { otherwise }\end{cases}
$$

(c) Use the formula from part (b) to conclude that $\widetilde{\operatorname{chr}}_{G}(q, t) \in \mathbb{Z}[q, t]$ (i.e., the bad coloring polynomial is actually a polynomial).
(d) Compute the bad coloring polynomial of K_{4}.

