THE GEOMETRY OF MATROIDS LECTURE 24 EXERCISES

1. Log-concavity implies unimodality

A finite sequence (a_0, a_1, \ldots, a_n) of positive numbers is **unimodal** if there is some $0 \le k \le n$ such that

 $a_0 \le a_1 \le \dots \le a_{k-1} \le a_k \ge a_{k+1} \ge \dots \ge a_n.$

- (a) Show that every log-concave sequence of positive numbers is unimodal.
- (b) Find an example of a unimodal sequence of positive numbers which is not logconcave.

2. *Acyclic orientations

Let G be a connected simple graph. An **orientation** of G is an assignment of a direction to each edge (i.e. the undirected edge $\{v, w\} \in E(G)$ becomes either $v \to w$ or $v \leftarrow w$). A **directed cycle** in the resulting directed graph is a path

$$v_1 \to v_2 \to \cdots \to v_k \to v_1.$$

An **acyclic orientation** of G is an orientation which results in no directed cycles.

- (a) Let T be a tree on n vertices. Show that there are 2^{n-1} acyclic orientations of T.
- (b) Let C_n be the cycle graph with n vertices $(n \ge 3)$. Compute the number of acyclic orientations of C_n .
- (c) Let G be an arbitrary connected simple graph. Prove that the number of acyclic orientations of G is

$$(-1)^{|V(G)|} \operatorname{chr}_{G}(-1).$$

[HINT: Use the deletion-contraction formula for chr_G and induct on the number of edges.]

LECTURE 24 EXERCISES

3. Bad colorings

Let G be a graph. Given a coloring κ of the vertices of G using q colors, we say that an edge $e = \{v, w\}$ is **monochromatic** if its endpoints v and w are the same color. We let

 $mono(\kappa) = \{e \mid e \text{ is monochromatic in } \kappa\},\$

so that κ is a proper q-coloring if and only if $mono(\kappa) = \emptyset$.

The **bad coloring polynomial** of G is

$$\widetilde{\operatorname{chr}}_G(q,t) = \sum_{\kappa} t^{|\operatorname{mono}(\kappa)|}$$

where the sum is taken over all colorings κ of the vertex set of G using q colors. (a) Show that

(i)
$$chr_G(q, 0) = chr_G(q)$$
.

(ii)
$$\operatorname{chr}_{G}(q, 1) = q^{|V(G)|}$$
.

(ii) $\operatorname{chr}_G(q, 1) = q^{|\cdot|(G)|}$ (iii) $\operatorname{chr}_G(1, t) = t^{|E(G)|}$.

(b) Let $e \in E(G)$ be an edge. Prove that

$$\widetilde{\operatorname{chr}}_{G}(q,t) = \begin{cases} t \operatorname{chr}_{G \setminus e}(q,t) & \text{if } e \text{ is a loop;} \\ \widetilde{\operatorname{chr}}_{G \setminus e}(q,t) + (t-1) \operatorname{chr}_{G/e}(q,t) & \text{otherwise.} \end{cases}$$

- (c) Use the formula from part (b) to conclude that $\widetilde{\operatorname{chr}}_G(q,t) \in \mathbb{Z}[q,t]$ (i.e., the bad coloring polynomial is actually a polynomial).
- (d) Compute the bad coloring polynomial of K_4 .

$\mathbf{2}$