THE GEOMETRY OF MATROIDS LECTURE 26 EXERCISES

1. Möbius function computations

For each matroid M below, compute $\mu_{M}(\emptyset, F)$ for every flat F. Use this to compute the characteristic polynomial $\chi_{M}(q)$. (Compare Lecture 21 Exercise 1.)
(a) $M\left(K_{4}\right)$
(b) $M\left(K_{5}\right)$
(c) $M(G)$, where G is the graph obtained from K_{4} by deleting any edge.
(d) $U_{3, n}$ for $n \geq 3$
(e) $U_{4, n}$ for $n \geq 4$.

2. \star The incidence algebra of a poset

Let \mathcal{P} be a finite poset. Define

$$
\operatorname{Int}(\mathcal{P})=\{(x, y) \mid x, y \in \mathcal{P} \text { with } x \leq y\}
$$

to be the set of intervals in \mathcal{P}.
Given a field K, let $I(\mathcal{P}, K)$ be the K-vector space of all functions

$$
\alpha: \operatorname{Int}(\mathcal{P}) \rightarrow K
$$

If $\alpha, \beta \in I(\mathcal{P}, K)$, we define their product $\alpha \beta \in I(\mathcal{P}, K)$ to be the convolution

$$
\alpha \beta(x, y)=\sum_{x \leq z \leq y} \alpha(x, z) \beta(z, y) .
$$

Under this convolution product, $I(\mathcal{P}, K)$ is an associative K-algebra, called the incidence algebra of \mathcal{P} over K.
(a) Check that $I(\mathcal{P}, K)$ has a two-sided identity δ, given by

$$
\delta(x, y)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { if } x \neq y\end{cases}
$$

(b) Show that $\alpha \in I(\mathcal{P}, K)$ has a right inverse if and only if $\alpha(x, x) \neq 0$ for all $x \in \mathcal{P}$. [Hint: Compute the inverse explicitly.]
(c) Show $\alpha \in I(\mathcal{P}, K)$ has a right inverse if and only if it has a left inverse if and only if it has a two-sided inverse.
(d) Define $\zeta \in I(\mathcal{P}, K)$ by

$$
\zeta(x, y)=1 \quad \text { for all }(x, y) \in \operatorname{Int}(\mathcal{P})
$$

Compute $\zeta^{-1} \in I(\mathcal{P}, K)$.

