THE GEOMETRY OF MATROIDS LECTURE 26 EXERCISES

1. Möbius function computations

For each matroid M below, compute $\mu_M(\emptyset, F)$ for every flat F. Use this to compute the characteristic polynomial $\chi_M(q)$. (Compare Lecture 21 Exercise 1.)

- (a) $M(K_4)$
- (b) $M(K_5)$
- (c) M(G), where G is the graph obtained from K_4 by deleting any edge.
- (d) $U_{3,n}$ for $n \ge 3$
- (e) $U_{4,n}$ for $n \ge 4$.

2. *The incidence algebra of a poset

Let \mathcal{P} be a finite poset. Define

$$Int(\mathcal{P}) = \{(x, y) \mid x, y \in \mathcal{P} \text{ with } x \le y\}$$

to be the set of intervals in \mathcal{P} .

Given a field K, let $I(\mathcal{P}, K)$ be the K-vector space of all functions

$$\alpha\colon \operatorname{Int}(\mathcal{P})\to K.$$

If $\alpha, \beta \in I(\mathcal{P}, K)$, we define their product $\alpha \beta \in I(\mathcal{P}, K)$ to be the convolution

$$\alpha\beta(x,y) = \sum_{x \le z \le y} \alpha(x,z)\beta(z,y).$$

Under this convolution product, $I(\mathcal{P}, K)$ is an associative K-algebra, called the **incidence algebra** of \mathcal{P} over K.

(a) Check that $I(\mathcal{P}, K)$ has a two-sided identity δ , given by

$$\delta(x,y) = \begin{cases} 1 & \text{if } x = y; \\ 0 & \text{if } x \neq y. \end{cases}$$

- (b) Show that $\alpha \in I(\mathcal{P}, K)$ has a right inverse if and only if $\alpha(x, x) \neq 0$ for all $x \in \mathcal{P}$. [HINT: Compute the inverse explicitly.]
- (c) Show $\alpha \in I(\mathcal{P}, K)$ has a right inverse if and only if it has a left inverse if and only if it has a two-sided inverse.
- (d) Define $\zeta \in I(\mathcal{P}, K)$ by

$$\zeta(x,y) = 1$$
 for all $(x,y) \in Int(\mathcal{P})$.

Compute $\zeta^{-1} \in I(\mathcal{P}, K)$.