THE GEOMETRY OF MATROIDS LECTURE 27 EXERCISES

For these problems, we fix a finite poset \mathcal{P} and field K. Let $I(\mathcal{P}, K)$ be the incidence algebra of \mathcal{P} over K (cf. Lecture 26 Exercise 2). Recall that $I(\mathcal{P}, K)$ has a two-sided identity, δ.

1. Counting chains

Let $\zeta \in I(\mathcal{P}, K)$ be defined by

$$
\zeta(x, y)=1 \quad \text { for all }(x, y) \in \operatorname{Int}(\mathcal{P})
$$

(a) Let $x \leq y$ in \mathcal{P}. Show that $\zeta^{2}(x, y)$ is equal to the cardinality of the set

$$
\{z \mid x \leq z \leq y\}
$$

(b) Let $x \leq y$ in \mathcal{P}. Elements $s_{0}, s_{1}, \ldots, s_{k} \in \mathcal{P}$ form a multichain of length k from x to y if

$$
x=s_{0} \leq s_{1} \leq \cdots \leq s_{k}=y
$$

Show that $\zeta^{k}(x, y)$ is equal to the number of length k multichains from x to y.
(c) A chain is a multichain in which every containment is strict. Show that

$$
(\zeta-\delta)^{k}(x, y)
$$

is equal to the number of length k chains from x to y.

2. \star Möbius inversion via algebra

Consider the K-vector space $K^{\mathcal{P}}$ of all functions $\mathcal{P} \rightarrow K$.
(a) For $\alpha \in I(\mathcal{P}, K)$ and $f \in K^{\mathcal{P}}$, define $\alpha \cdot f \in K^{\mathcal{P}}$ via

$$
(\alpha \cdot f)(x)=\sum_{y \geq x} \alpha(x, y) f(y)
$$

Prove that this action makes $K^{\mathcal{P}}$ into a left $I(\mathcal{P}, K)$-module.
(b) In Lecture 26 Exercise 3, you proved that $\zeta \in I(\mathcal{P}, K)$ is invertible. Thus,

$$
f=\zeta \cdot g \quad \Longleftrightarrow \quad \zeta^{-1} \cdot f=g
$$

Explain why this statement "is" Möbius inversion.
(c) Prove the "dual" form of Möbius inversion by a similar argument.
[Hint: Show that $K^{\mathcal{P}}$ is also a right $I(\mathcal{P}, K)$-module.]

