THE GEOMETRY OF MATROIDS LECTURE 28 EXERCISES

1. Independent flats

Let M be a simple matroid on E, and let F be a flat of M. Show that $\mu_{M}(\emptyset, F)= \pm 1$ if and only if F is independent.

2. \star The Möbius algebra

Let \mathcal{L} be a finite lattice and let K be a field. Let $A(\mathcal{L}, K)$ be the K-algera with basis $\left\{\epsilon_{x} \mid x \in \mathcal{L}\right\}$ and multiplication

$$
\epsilon_{x} \cdot \epsilon_{y}=\epsilon_{x \vee y}
$$

The algebra $A(\mathcal{L}, K)$ is the Möbius algebra of \mathcal{L} over K.
Let $B(\mathcal{L}, K)$ be the K-algebra with basis $\left\{\sigma_{x} \mid x \in \mathcal{L}\right\}$ and multiplication

$$
\sigma_{x} \cdot \sigma_{y}=\delta_{x y} \sigma_{x}
$$

That is, $B(\mathcal{L}, K) \cong \bigoplus_{x \in \mathcal{L}} K$ with coordinate-wise multiplication.
While $A(\mathcal{L}, K)$ and $B(\mathcal{L}, K)$ are both $|\mathcal{L}|$-dimensional vector spaces over K, it appears that $A(\mathcal{L}, K)$ has a more interesting ring structure.
(a) Find an injective K-algebra homomorphism $\varphi: A(\mathcal{L}, K) \rightarrow B(\mathcal{L}, K)$ (specify the image of each basis element ϵ_{x}).
(b) Conclude that $A(\mathcal{L}, K) \cong B(\mathcal{L}, K)$ as K-algebras.
(c) In each of the following cases, describe the inverse isomorphism. That is, determine $\varphi^{-1}\left(\sigma_{x}\right) \in A(\mathcal{L}, K)$ for each $x \in \mathcal{L}$.
(i) $\mathcal{L}=\mathcal{L}\left(U_{2,2}\right)$
(ii) $\mathcal{L}=\mathcal{L}\left(U_{3,3}\right)$
(iii) $\mathcal{L}=\mathcal{L}\left(U_{3,4}\right)$
(d) Describe the inverse isomorphism φ^{-1} in general.

3. *Weisner's theorem via the Möbius algebra

Let M be a loopless matroid on ground set E, and let K be a field. Let $A(\mathcal{L}(M), K)$ be the Möbius algebra of $\mathcal{L}(M)$ over K.

Let F be a nonempty flat. Compute the product $\epsilon_{F} \cdot \sigma_{\emptyset} \in A(\mathcal{L}(M), K)$ two ways, first by using the σ-basis and then again using the ϵ-basis. Use these computations to provide an alternate proof of Weisner's theorem.

