THE GEOMETRY OF MATROIDS LECTURE 29 EXERCISES

1. Broken circuits

Let M be a matroid on ground set $[n]=\{1, \ldots, n\}$. A broken circuit of M is a set of the form $C \backslash m$, where $C \in \mathcal{C}(M)$ is a circuit and m is the minimal element in C (with respect to the standard ordering of $[n]$). A subset $I \subseteq[n]$ is called a no-broken-circuit-set (or nbc-set for short) if I contains no broken circuits.
(a) Compute all broken circuits and nbc-sets of $U_{3,5}$.
(b) Compute all broken circuits and nbc-sets of $M\left(K_{4}\right)$.
(c) Show that any nbc-set I is independent.
(d) Suppose $B \in \mathcal{B}(M)$ is a basis which is also an nbc-set. Show that $1 \in B$.
(e) Let $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$, where $i_{1}<i_{2}<\cdots<i_{k}$. Show that I is an nbc-set if and only if i_{t} is the minimal element of $\operatorname{cl}\left(\left\{i_{t}, i_{t+1}, \ldots, i_{k}\right\}\right)$ for all $1 \leq t \leq k$.

2. \star Broken circuits and Whitney numbers of the first kind

Let M be a matroid of rank r on ground set E. The Möbius number of M is

$$
\mu(M):=(-1)^{r} \chi_{M}(0)=(-1)^{r} \mu_{M}(\emptyset, E) .
$$

That is, $\mu(M)=\left|w_{r}\right|$ is the r th unsigned Whitney number of the first kind.
(a) Check that the Möbius number satisfies the following properties.
(i) $\mu\left(U_{0,0}\right)=1$.
(ii) If M has a loop, then $\mu(M)=0$.
(iii) If e is a coloop, then $\mu(M)=\mu(M / e)$.
(iv) If e is neither a loop nor a coloop, then $\mu(M)=\mu(M \backslash e)+\mu(M / e)$.
(b) Fix a total order on the ground set E (equivalently, choose a bijection $E \cong[n]$). Let

$$
\mathcal{N}(M)=\{B \in \mathcal{B}(M) \mid B \text { is an nbc-set }\}
$$

be the set of nbc-bases of M. Check that the following properties hold.
(i) $\left|\mathcal{N}\left(U_{0,0}\right)\right|=1$.
(ii) If M has a loop, then \emptyset is a broken circuit and therefore $|\mathcal{N}(M)|=0$.
(iii) If e is a coloop, then $|\mathcal{N}(M)|=|\mathcal{N}(M / e)|$
(iv) If e is neither a loop nor a coloop, then $|\mathcal{N}(M)|=|\mathcal{N}(M \backslash e)|+|\mathcal{N}(M / e)|$.
(c) Conclude that $\mu(M)=|\mathcal{N}(M)|$.
(d) Let F be a flat of M. Show that $(-1)^{\mathrm{rk}(F)} \mu_{M}(\emptyset, F)$ is equal to the number of nbc-sets I in M such that $\operatorname{cl}(I)=F$. [Hint: Apply part (c) to the restriction $M \mid F$.]
(e) Conclude that $\left|w_{k}\right|$, the k th unsigned Whitney number of the first kind, is equal to the number of nbc-sets in M of cardinality k.

