THE GEOMETRY OF MATROIDS LECTURE 29 EXERCISES

1. Broken circuits

Let M be a matroid on ground set $[n] = \{1, ..., n\}$. A **broken circuit** of M is a set of the form $C \setminus m$, where $C \in \mathcal{C}(M)$ is a circuit and m is the minimal element in C (with respect to the standard ordering of [n]). A subset $I \subseteq [n]$ is called a **no-broken-circuit-set** (or **nbc-set** for short) if I contains no broken circuits.

- (a) Compute all broken circuits and nbc-sets of $U_{3,5}$.
- (b) Compute all broken circuits and nbc-sets of $M(K_4)$.
- (c) Show that any nbc-set I is independent.
- (d) Suppose $B \in \mathcal{B}(M)$ is a basis which is also an nbc-set. Show that $1 \in B$.
- (e) Let $I = \{i_1, i_2, \dots, i_k\}$, where $i_1 < i_2 < \dots < i_k$. Show that I is an nbc-set if and only if i_t is the minimal element of $cl(\{i_t, i_{t+1}, \dots, i_k\})$ for all $1 \le t \le k$.

2. *Broken circuits and Whitney numbers of the first kind

Let M be a matroid of rank r on ground set E. The **Möbius number** of M is

$$\mu(M) := (-1)^r \chi_M(0) = (-1)^r \mu_M(\emptyset, E).$$

That is, $\mu(M) = |w_r|$ is the *r*th unsigned Whitney number of the first kind.

- (a) Check that the Möbius number satisfies the following properties.
 - (i) $\mu(U_{0,0}) = 1$.
 - (ii) If M has a loop, then $\mu(M) = 0$.
 - (iii) If e is a coloop, then $\mu(M) = \mu(M/e)$.
 - (iv) If e is neither a loop nor a coloop, then $\mu(M) = \mu(M \setminus e) + \mu(M/e)$.
- (b) Fix a total order on the ground set E (equivalently, choose a bijection $E \cong [n]$). Let

$$\mathcal{N}(M) = \{ B \in \mathcal{B}(M) \mid B \text{ is an nbc-set} \}$$

be the set of nbc-bases of M. Check that the following properties hold.

- (i) $|\mathcal{N}(U_{0,0})| = 1.$
- (ii) If M has a loop, then \emptyset is a broken circuit and therefore $|\mathcal{N}(M)| = 0$.
- (iii) If e is a coloop, then $|\mathcal{N}(M)| = |\mathcal{N}(M/e)|$
- (iv) If e is neither a loop nor a coloop, then $|\mathcal{N}(M)| = |\mathcal{N}(M \setminus e)| + |\mathcal{N}(M/e)|$.
- (c) Conclude that $\mu(M) = |\mathcal{N}(M)|$.
- (d) Let F be a flat of M. Show that $(-1)^{\operatorname{rk}(F)}\mu_M(\emptyset, F)$ is equal to the number of nbc-sets I in M such that $\operatorname{cl}(I) = F$. [HINT: Apply part (c) to the restriction M|F.]
- (e) Conclude that $|w_k|$, the kth unsigned Whitney number of the first kind, is equal to the number of nbc-sets in M of cardinality k.