THE GEOMETRY OF MATROIDS LECTURE 30 EXERCISES

1. *The reduced characteristic polynomial of the truncation

Let M be a loopless matroid of rank $r \ge 1$ on ground set E.

(a) Show that

$$\overline{\chi}_{\operatorname{trunc}(M)}(q) = \frac{\overline{\chi}_M(q) - \overline{\chi}_M(0)}{q}$$

(b) As usual, write

$$\overline{\chi}_M(q) = \sum_{k=0}^{r-1} (-1)^k \mu^k q^{r-1-k}.$$

Use part (a) to express the coefficients of $\overline{\chi}_{trunc(M)}$ in terms of the coefficients μ^k of $\overline{\chi}_M$.

(c) Interpret the result of part (b) as a statement about the number of initial descending flags of flats in trunc(M) as compared to M. Does this make sense?

2. Some Orlik-Solomon algebras

For each matroid M below, compute the rank of $OS^k(M)$ for all $k \ge 0$.

- (a) $U_{2,3}$
- (b) $U_{2,4}$
- (c) $U_{3,4}$
- (d) $M(K_4)$
- (e) F_7

3. *The Orlik-Solomon algebra detects dependence

Let M be a loopless matroid of rank r on ground set $[n] = \{1, \ldots, n\}$.

- (a) Let $C \in \mathcal{C}(M)$ be a circuit. Show that $x_C = 0$ in $OS^{\bullet}(M)$.
- (b) Let D be a dependent set of M. Show that $x_D = 0$ in $OS^{\bullet}(M)$.
- (c) Let D be a dependent set of M. Use the graded Leibniz rule

$$\partial(x_S \wedge x_T) = x_S \wedge \partial x_T + (-1)^{|S|} \partial x_S \wedge x_T$$

Ia

to show that $\partial x_D = 0$ in $OS^{\bullet}(M)$.

(d) Conclude that $OS^k(M) = 0$ if k > r.