THE GEOMETRY OF MATROIDS LECTURE 31 EXERCISES

1. The flat-grading on the Orlik-Solomon algebra

Let M be a loopless matroid of rank r on ground set $[n] = \{1, \ldots, n\}$. Let

$$\Lambda^{\bullet}[\mathbf{x}] = \Lambda^{\bullet}[x_1, \dots, x_n]$$

be the graded exterior algebra over \mathbb{Z} . Recall that for each $S = \{i_1, \ldots, i_k\} \subseteq [n]$ with $i_1 < \cdots < i_k$, we write $x_S = x_{i_1} \land \cdots \land x_{i_k}$.

For each flat $F \in \mathcal{L}(M)$, let $\Lambda^F[\mathbf{x}]$ be the subgroup of $\Lambda^{\bullet}[\mathbf{x}]$ generated by elements x_S such that cl(S) = F. Then

$$\Lambda^{\bullet}[\mathbf{x}] = \bigoplus_{F \in \mathcal{L}(M)} \Lambda^{F}[\mathbf{x}].$$

If $y \in \Lambda^{F}[\mathbf{x}]$, then we say y is **flat-homogeneous** and has **flat-grade** F.

- (a) Let $y \in \Lambda^F[\mathbf{x}]$ and $z \in \Lambda^G[\mathbf{x}]$ be flat-homogeneous elements. Show that the exterior product $y \wedge z$ is flat-homogeneous with flat-grade $F \vee G = \operatorname{cl}(F \cup G)$.
- (b) Show that the Orlik-Solomon ideal

$$I_{\rm OS} = (\partial x_C \mid C \text{ is a circuit of } M)$$

is flat-homogeneous (i.e., each generator ∂x_C is flat-homogeneous).

(c) Conclude that $OS^{\bullet}(M) = \Lambda^{\bullet}[\mathbf{x}]/I_{OS}$ inherits the flat-grading from $\Lambda^{\bullet}[\mathbf{x}]$. Moreover, this refines the standard grading in that

$$OS^k(M) = \bigoplus_{F \in \mathcal{L}(M)_k} OS^F(M),$$

where the sum is over all flats F of rank k and $OS^F(M)$ is the image of $\Lambda^F[\mathbf{x}]$ in $OS^{\bullet}(M)$.

LECTURE 31 EXERCISES

2. $\star\star$ The nbc-basis of the Orlik-Solomon algebra

Let M be a loopless matroid of rank r on ground set $[n] = \{1, \ldots, n\}$. If $I \subseteq [n]$ is an nbc-set (cf. Lecture 29 Exercise 1), then we shall call the element $x_I \in OS^{\bullet}(M)$ an **nbc-monomial**. We shall show that the nbc-monomials form a basis for $OS^{\bullet}(M)$.

It will be convenient to put the glex (graded lexicographic) order on the collection of subsets of [n]. Given $S, T \subseteq [n]$, we write S < T if either |S| < |T| or |S| = |T| and when we write the elements of S and T in increasing order,

$$S = \{i_1, \dots, i_k\}, T = \{j_1, \dots, j_k\}$$
 with $i_1 < \dots < i_k$ and $j_1 < \dots < j_k$,

there is some index t such that $i_1 = j_1$, $i_2 = j_2$, ..., $i_{t-1} = j_{t-1}$, and $i_t < j_t$. That is, we compare subsets in the glex order by first comparing cardinality, then comparing smallest elements, then comparing second smallest elements, and so on.

- (a) Let I be an independent set, and suppose $C \setminus m$ is a broken circuit contained in I. Show that $\partial x_{I \cup m} = 0$ in $OS^{\bullet}(M)$ and use this to express x_I as a sum of elements of the form x_J , where J is independent and J < I.
- (b) Use part (a) to show that the nbc-monomials span $OS^{\bullet}(M)$.
- (c) Use the flat-grading on $OS^{\bullet}(M)$ to show that any minimal linear relation among nbc-monomials must occur among nbc-monomials contained in $OS^{F}(M)$ for some flat F.
- (d) Fix a flat F of rank k. Suppose

$$\sum a_I x_I = 0$$

is a linear relation among distinct nbc-monomials in $OS^F(M)$. Apply the derivation ∂ to obtain a linear relation in $OS^{k-1}(M)$. Express this degree-(k-1) relation as a sum over *distinct* nbc-monomials. [HINT: If I is an nbc-set with cl(I) = F, then I must contain the minimal element $e \in F$ (why?). Use the graded Leibniz rule and pay attention to this minimal element.]

- (e) Use part (d) and induction on k to show that there are no nontrivial relations among the nbc-monomials.
- (f) Conclude that

rank
$$OS^F(M) = (-1)^{\operatorname{rk}(F)} \mu_M(\emptyset, F)$$
 and $\operatorname{rank} OS^k(M) = |w_k|$
(cf. Lecture 29 Exercise 2).

 $\mathbf{2}$