THE GEOMETRY OF MATROIDS LECTURE 32 EXERCISES

1. \star Using the Orlik-Solomon algebra to distinguish matroids Let M_{1} and M_{2} be the simple rank 3 matroids shown below.

(a) Show that $\chi_{M_{1}}(q)=\chi_{M_{2}}(q)$. Conclude that rank $\operatorname{OS}^{k}\left(M_{1}\right)=\operatorname{rank} \operatorname{OS}^{k}\left(M_{2}\right)$ for all $k \geq 0$.
(b) Show that $\operatorname{OS}^{\bullet}\left(M_{1}\right) \not \neq \operatorname{OS}^{\bullet}\left(M_{2}\right)$.

2. \star The Orlik-Solomon algebra determines the matroid... or does it?

Let M be a loopless matroid.
(a) Use Lecture 30 Exercise 3 and Lecture 31 Exercise 2 to show that a monomial x_{I} is nonzero in $\mathrm{OS}^{\bullet}(M)$ if and only if $I \in \mathcal{I}(M)$.
(b) Let N_{1} and N_{2} be the simple rank 3 matroids shown below.

Show that the automorphism of $\Lambda^{\bullet}\left[x_{1}, \ldots, x_{6}\right]$ given by

$$
\begin{aligned}
x_{1} & \mapsto x_{1} \\
x_{2} & \mapsto x_{2} \\
x_{3} & \mapsto x_{3} \\
x_{4} & \mapsto x_{3}-x_{5}+x_{6} \\
x_{5} & \mapsto x_{4}-x_{5}+x_{6} \\
x_{6} & \mapsto x_{6}
\end{aligned}
$$

induces an isomorphism $\operatorname{OS}^{\bullet}\left(N_{1}\right) \cong \mathrm{OS}^{\bullet}\left(N_{2}\right)$.
(c) Part (a) seems to say that the Orlik-Solomon algebra $\mathrm{OS}^{\bullet}(M)$ completely determines the matroid M, but in part (b) we found a pair of non-isomorphic matroids with isomorphic Orlik-Solomon algebras. How do you reconcile these seemingly contradictory observations?

