## THE GEOMETRY OF MATROIDS LECTURE 32 EXERCISES

1. \*Using the Orlik-Solomon algebra to distinguish matroids Let  $M_1$  and  $M_2$  be the simple rank 3 matroids shown below.



- (a) Show that  $\chi_{M_1}(q) = \chi_{M_2}(q)$ . Conclude that rank  $OS^k(M_1) = rank OS^k(M_2)$  for all  $k \ge 0$ .
- (b) Show that  $OS^{\bullet}(M_1) \cong OS^{\bullet}(M_2)$ .

## LECTURE 32 EXERCISES

## 2. \*The Orlik-Solomon algebra determines the matroid ... or does it? Let M be a loopless matroid.

- (a) Use Lecture 30 Exercise 3 and Lecture 31 Exercise 2 to show that a monomial  $x_I$  is nonzero in  $OS^{\bullet}(M)$  if and only if  $I \in \mathcal{I}(M)$ .
- (b) Let  $N_1$  and  $N_2$  be the simple rank 3 matroids shown below.



Show that the automorphism of  $\Lambda^{\bullet}[x_1, \ldots, x_6]$  given by

$$x_{1} \mapsto x_{1}$$

$$x_{2} \mapsto x_{2}$$

$$x_{3} \mapsto x_{3}$$

$$x_{4} \mapsto x_{3} - x_{5} + x_{6}$$

$$x_{5} \mapsto x_{4} - x_{5} + x_{6}$$

$$x_{6} \mapsto x_{6}$$

induces an isomorphism  $OS^{\bullet}(N_1) \cong OS^{\bullet}(N_2)$ .

(c) Part (a) seems to say that the Orlik-Solomon algebra  $OS^{\bullet}(M)$  completely determines the matroid M, but in part (b) we found a pair of non-isomorphic matroids with isomorphic Orlik-Solomon algebras. How do you reconcile these seemingly contradictory observations?

 $\mathbf{2}$