THE GEOMETRY OF MATROIDS LECTURE 35 EXERCISES

1. \star The wonderful model of the braid arrangement

In this problem, we consider the matroid $M\left(K_{4}\right)$.
(a) Prove that the configuration

$$
\mathcal{A}=\{(1,-1,0,0),(1,0,-1,0),(1,0,0,-1),(0,1,-1,0),(0,1,0,-1),(0,0,1,-1)\}
$$ of vectors in \mathbb{C}^{4} is a representation of $M\left(K_{4}\right)$ over \mathbb{C}.

(b) Show that the configuration from part (a) spans the subspace

$$
V=\left\{\left(v_{1}, v_{2}, v_{3}, v_{4}\right) \mid v_{1}+v_{2}+v_{3}+v_{4}=0\right\} \subseteq \mathbb{C}^{4}
$$

(c) Our choice of coordinates on \mathbb{C}^{4} gives an isomorphism $\left(\mathbb{C}^{4}\right)^{*} \cong \mathbb{C}^{4}$. Check that

$$
V^{\perp}=\operatorname{span}\{(1,1,1,1)\} \subseteq \mathbb{C}^{4}
$$

and

$$
V^{*} \cong \mathbb{C}^{4} / V^{\perp}
$$

Conclude that if x_{1}, \ldots, x_{4} are the coordinate functions on \mathbb{C}^{4}, then $x_{i}-x_{j}(i \neq j)$ is a well-defined linear functional on V^{*}.
(d) For $1 \leq i<j \leq 4$, let $H_{i j} \subseteq V^{*}$ be the hyperplane defined by $x_{i}-x_{j}=0$. Check that

$$
\left\{H_{i j} \mid 1 \leq i<j \leq 4\right\}
$$

is the hyperplane arrangement in V^{*} associated to the configuration from part (a).
(e) Draw a (cartoon) picture of the projectivized hyperplane arrangement

$$
\left\{\mathbb{P} H_{i j} \mid 1 \leq i<j \leq 4\right\}
$$

in $\mathbb{P} V^{*}$. (It may help to begin by choosing an isomorphism $V^{*} \cong \mathbb{C}^{3}$.)
(f) Let $Y_{\mathcal{A}}$ be the wonderful compactification of the projective complement $\mathbb{P} U_{\mathcal{A}}$ of the hyperplane arrangement described in part (d). Describe the boundary divisor $\partial Y_{\mathcal{A}}$.
More precisely, list the irreducible components of the boundary divisor and show that each is isomorphic to \mathbb{P}^{1}. Given two boundary components, D_{F} and D_{G}, when is the intersection $D_{F} \cap D_{G}$ nonempty?

