THE GEOMETRY OF MATROIDS LECTURE 35 EXERCISES

1. *The wonderful model of the braid arrangement

In this problem, we consider the matroid $M(K_4)$.

- (a) Prove that the configuration
- $\mathcal{A} = \{(1, -1, 0, 0), (1, 0, -1, 0), (1, 0, 0, -1), (0, 1, -1, 0), (0, 1, 0, -1), (0, 0, 1, -1)\}$

of vectors in \mathbb{C}^4 is a representation of $M(K_4)$ over \mathbb{C} .

(b) Show that the configuration from part (a) spans the subspace

$$V = \{ (v_1, v_2, v_3, v_4) \mid v_1 + v_2 + v_3 + v_4 = 0 \} \subseteq \mathbb{C}^4.$$

(c) Our choice of coordinates on \mathbb{C}^4 gives an isomorphism $(\mathbb{C}^4)^* \cong \mathbb{C}^4$. Check that

$$V^{\perp} = \operatorname{span}\{(1, 1, 1, 1)\} \subseteq \mathbb{C}^4.$$

and

$$V^* \cong \mathbb{C}^4 / V^\perp$$

Conclude that if x_1, \ldots, x_4 are the coordinate functions on \mathbb{C}^4 , then $x_i - x_j$ $(i \neq j)$ is a well-defined linear functional on V^* .

(d) For $1 \le i < j \le 4$, let $H_{ij} \subseteq V^*$ be the hyperplane defined by $x_i - x_j = 0$. Check that

$$\{H_{ij} \mid 1 \le i < j \le 4\}$$

is the hyperplane arrangement in V^* associated to the configuration from part (a).

(e) Draw a (cartoon) picture of the projectivized hyperplane arrangement

$$\{\mathbb{P}H_{ij} \mid 1 \le i < j \le 4\}$$

in $\mathbb{P}V^*$. (It may help to begin by choosing an isomorphism $V^* \cong \mathbb{C}^3$.)

(f) Let $Y_{\mathcal{A}}$ be the wonderful compactification of the projective complement $\mathbb{P}U_{\mathcal{A}}$ of the hyperplane arrangement described in part (d). Describe the boundary divisor $\partial Y_{\mathcal{A}}$.

More precisely, list the irreducible components of the boundary divisor and show that each is isomorphic to \mathbb{P}^1 . Given two boundary components, D_F and D_G , when is the intersection $D_F \cap D_G$ nonempty?