THE GEOMETRY OF MATROIDS LECTURE 36 EXERCISES

1. *Intersections of boundary components

Let M be a \mathbb{C} -representable simple matroid on ground set E. Let \mathcal{A} be a vector configuration in a \mathbb{C} -vector space V with $M = M(\mathcal{A})$, and let $U_{\mathcal{A}}$ be the complement of the associated hyperplane arrangement in V^* . For each non-empty proper flat $F \in \mathcal{L}(M)$, we have the boundary component D_F in the wonderful compactification $Y_{\mathcal{A}}$ of $\mathbb{P}U_{\mathcal{A}}$.

(a) Use the isomorphism

$$D_F \cong \mathbb{P}H_F \times \mathbb{P}(V^*/H_F)$$

described in class to prove that $D_F \cap D_G$ is nonempty if and only if $F \subseteq G$ or $G \subseteq F$.

(b) More generally, let

 $\emptyset \subset F_1 \subset \cdots \subset F_k \subset E$

be a chain of proper, nonempty flats. Show that the intersection

$$D_{F_1} \cap \cdots \cap D_{F_k}$$

is nonempty and is isomorphic to a product of projective spaces.

2. *The Chow ring of $U_{3,4}$

Consider the Chow ring $A^{\bullet}(U_{3,4})$, which is generated by x_1, \ldots, x_4 and x_{12}, \ldots, x_{34} . Show that the following equalities hold in $A^{\bullet}(U_{3,4})$.

(a) $x_i x_{ij} = x_1 x_{12}$ for all $1 \le i, j \le 4$.

(b)
$$x_i^2 = -2x_1x_{12}$$
 for all $1 \le i \le 4$.

(c) $x_{ij}^2 = -x_1 x_{12}$ for all $1 \le i, j \le 4$. Conclude that $A^2(U_{3,4})$ is isomorphic to either \mathbb{Z} or $\{0\}$. Can you tell which it is?