THE GEOMETRY OF MATROIDS LECTURE 37 EXERCISES

1. *Psi classes and square-free monomials

Let M be a simple matroid of rank r on ground set E. For $i \in E$, define elements $\alpha, \beta \in A^1(M)$ by

$$\alpha = \sum_{G \ni i} x_G$$
 and $\beta = \sum_{G \not\ni i} x_G$.

It follows from the definition of $A^{\bullet}(M)$ that the elements α and β are independent of the choice of *i*. (You should check this!)

Let $F \in \mathcal{L}(M) \setminus \{\emptyset, E\}$ be a nonempty proper flat. Define the **psi classes** $\psi_F^{\pm} \in A^1(M)$ by

$$\psi_F^- = \alpha - \sum_{G \supseteq F} x_G$$
 and $\psi_F^+ = \beta - \sum_{G \subseteq F} x_G$.

(a) Choose elements $i \in F$ and $j \notin F$. Show that

$$x_F = \sum_{G \ni j} x_G - \sum_{\substack{G \ni i \\ G \neq F}} x_G$$

as elements of $A^1(M)$.

(b) Use part (a) to show that

$$x_F^2 = -x_F(\psi_F^- + \psi_F^+)$$

in $A^2(M)$.

(c) Choose elements $i \in F$ and $j \notin F$. Use part (b) and the quadratic relations on $A^{\bullet}(M)$ to show

$$x_F^2 = -x_F \bigg(\sum_{\substack{G \subseteq F \\ i \in G}} x_G + \sum_{\substack{G \supseteq F \\ j \notin G}} x_G \bigg).$$

Conclude that the square-free monomials $x_{F_1}x_{F_2}$, where $F_1 \subsetneq F_2$, generate $A^2(M)$.

(d) Show that $A^{\bullet}(M)$ is generated by the square-free monomials $x_{F_1} \cdots x_{F_{\ell}}$, where

$$\emptyset = F_0 \subsetneq F_1 \subsetneq \cdots \subsetneq F_\ell \subsetneq E.$$

HINT: Suppose we have a monomial $x_{F_1}^{d_1} \cdots x_{F_\ell}^{d_\ell}$, where each $d_k \ge 1$. If $d_k > 1$ for some k, then

$$x_{F_1}^{d_1}\cdots x_{F_\ell}^{d_\ell} = -x_{F_1}^{d_1}\cdots x_{F_k}^{d_k-1}\cdots x_{F_\ell}^{d_\ell} \ (\psi_{F_k}^- + \psi_{F_k}^+).$$

Now, rewrite $(\psi_{F_k}^- + \psi_{F_k}^+)$ by choosing some $i \in F_k \setminus F_{k-1}$ and $j \in F_{k+1} \setminus F_k$.