Circuits + Cryptomorphism
Last time: A matroid is a pair $M=(E, \mathcal{I})$, where where

- E is a finite set
- $\tau \subseteq 2^{E}$ satisfies
(II) $\phi \in I$.
(I2) If $I \in \mathcal{I}$ and $J \subseteq I$, then $J \in \mathcal{I}$.
[Augmentation] $(I 3)$ If $I_{1}, I_{2} \in I$ and $\left|I_{1}\right|<\left|I_{2}\right|$, then thee exists $e \in I_{2} \backslash I_{1}$ such that $I_{1} \cup\{e\} \in \mathcal{I}$.

There are several equivalent-but-not-obvionsly-equivalent ("cryptomorphic") ways to define a matroid.

Exercise 3 Last time:

Thu: A collection $B \subseteq 2^{E}$ is the set of bases of a mattoid on E if and only if B satisfies
(BI) $B \neq \varnothing$.
[Exchange] $(B 2)$ If $B_{1}, B_{2} \in B$ and $x \in B_{1} \backslash B_{2}$, then there exists $y \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \backslash\{x\}\right) \cup\{y\} \in B$.

Def: A minimal dependent set of a matroid M is a circuit. The set of all circuits is denoted $l(M)$. $C \in C(M) \Leftrightarrow C \notin I(M)$ but ereng proper sob bet of C is in $\tau(M)$.

The: Let E be a finite set. A collection of subsets $\zeta \subseteq 2^{E}$ is the set of circuits of a matroid on E if and only if C satisfies
(CI) $\phi \notin \tau$
(C2) If $C_{1}, c_{2} \in \mathcal{C}$ with $C_{1} \subseteq C_{2}$, then $C_{1}=C_{2}$.
(C3) If $C_{1}, C_{2} \in C$ are distinct and $e \in C_{1} \cap C_{2}$, then there exists $C_{3} \in \mathcal{l}$ with

$$
C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash\{e\}
$$

Proof: (\Rightarrow) Let $M=(E, 工)$ be a mattoid and $l=\ell(M)$ its set of circuits.
(C1): Circuits are dependent and $\varnothing \in I$ by (I). So $\varnothing \& e$.
(C2): By minimality, every proper subset of a circuit is independent, so cannot be a circuit.
(C3): Let $C_{1}, C_{2} \in \mathcal{C}, \quad C_{1} \neq C_{2}, \quad e \in C_{1} \cap C_{2}$.
Want: $\left(C_{1} \cup C_{2}\right) \backslash e$ is dependent.
Suppose it's independent.
Since $C_{1} \neq C_{2}, C_{1} \cap C_{2}$ is independent also. By (I3), we may repeatedly anyment $C_{1} \cap C_{2}$ by $\left(C_{1} \cup C_{2}\right) \backslash e$ until we get

$$
C_{1} \cap C_{2} \subseteq I \subseteq\left(C_{1} \cup C_{2}\right)
$$

where $I \in \mathcal{I}(M)$

$$
|I|=\left|\left(c_{1} \cup c_{2}\right) \backslash e\right|=\left|c_{1} \cup c_{2}\right|-1 .
$$

So $I=\left(C_{1} \cup C_{2}\right) \backslash f$ for sone $f \in C_{1} \cup C_{2}$.
But $f \& C_{1} \cap C_{2}$, so either

$$
\begin{aligned}
& \cdot f \in C_{1} \backslash C_{2} \Rightarrow C_{2} \subseteq I \\
& \cdot f \in C_{2} \backslash C_{1} \Rightarrow C_{1} \subseteq I
\end{aligned}
$$

This contradicts the independence of I.

Conduce $\left(C_{1} \cup C_{2}\right) \backslash e$ is dependent, so it contains a circuit.

