Circuits + Cryptomorphism
Last time: A maturial is a pair
$$M = (E, \mathcal{X})$$
, where
where
 $\cdot E$ is a finite set
 $\cdot \mathcal{I} \subseteq 2^{E}$ satisfies
 $(II) \not {D} \in \mathcal{I}.$
 $(IZ) If I \in \mathcal{I}$ and $J \subseteq I$, then $J \in \mathcal{I}.$
(IZ) If $I \in \mathcal{I}$ and $J \subseteq I$, then $J \in \mathcal{I}.$
(IZ) If $I \in \mathcal{I}$ and $|I_{1}| < |I_{2}|$, then
there exists $e \in I_{2} \setminus I$, such that
 $I, \cup \{e\} \in \mathcal{I}.$

Thin: A collection
$$B \subseteq Z^E$$
 is the set of bases of a matroid
on E if and only if B satisfies
(B1) $B \neq \emptyset$.
(B2) If $B_i, B_2 \in B$ and $x \in B_i \setminus B_2$, then there exists
 $y \in B_2 \setminus B_i$ such that $(B_i \setminus \{x\}) \cup \{y\} \in B$.

Def: A minimal dependent set of a matroid M is a
circuit. The set of all circuits is denoted
$$C(M)$$
.
 $C \in C(M) \iff C \notin T(M)$ but every proper subset
of C is in $T(N)$.

Thm: Let E be a finite set: A collection of subsets

$$C \subseteq Z^E$$
 is the set of circuits of a matroid
on E if and only if C substites
(C1) $\not \not \in C$
(C2) If C₁, C₂ $\in C$ with C₁ \subseteq C₂, then C₁ $=$ C₂.
[Elimination](C3) If C₁, C₂ $\in C$ are distinct and $e \in C_1 \cap C_2$,
then there exists C₃ $\in C$ with
 $C_3 \subseteq (C_1 \cup C_2) \setminus E^2$

$$P_{roof}$$
: (=)) Let $M = (E, X)$ be a matroid and $C = C(M)$
its set of circuits.

(C2): By minimality, every puper subset of a
circuit is independent, so cannot be a
circuit.
(C3): Let
$$C_1, C_2 \in \mathbb{Z}$$
, $C_1 \neq C_2$, $e \in C_1 \cap C_2$.
Want: $(C_1 \cup C_2) \setminus e$ is dependent.
Suppose it's independent.
Since $C_1 \neq C_2$, $C_1 \cap C_2$ is independent also.
By (I3), we may repeatedly anyment
 $C_1 \cap C_2$ by $(C_1 \cup C_2) \setminus e$ until we get
 $C_1 \cap C_2 \subseteq I \subseteq (C_1 \cup C_2)$
where $I \in \mathbb{Z}(M)$
 $III = I(C_1 \cup C_2) \setminus eI = IC_1 \cup C_2 I - I$.
So $I = (C_1 \cup C_2) \setminus f$ for some $f \in C_1 \cup C_2$.
But $f \notin C_1 \cap C_2$, so either
 $f \in C_1 \setminus C_2$ is independence of I .

Conclude (C,UC2) le is dependent, so it contains a circuit. \checkmark