More cryptomorphic definitions
The rank function (cf. Day I Exercise I)
Def: Let M be a metroid on E. The work function
of M is

$$rk_{M}: 2^{E} \longrightarrow Z$$

 $X \longrightarrow \max_{I \in X(M)} III$
 $I \in X$
 $\cdot rk_{M}(X)$ is the mal of X
 $\cdot rk_{M}(E) = rk(M)$
 $\cdot Write rk instead of rk_{M}$ if M is clear
 $\cdot I \in Z(M) \iff rk_{M}(I) = III$
Then: Let E be = finite set, and $rk: 2^{E} \rightarrow Z$.
Then rk = rk_{M} for some metroid M on E
if and only if it satisfies:
 $(R I)$ For all $X \in E$, $0 \in rk(X) \in IXI$.
 $(R 2)$ If $X, Y \in E$, then $rk(X) \leq rk(Y)$.
Standard (R 3) If X, Y \in E, then
 $rk(X \cup Y) + rk(X \cap Y) \leq rk(X) + rk(Y)$.

Ex: If G is a finite graph and
$$X \in E(G)$$
, then
 $rk_{M(G)}(X) = \#V(G) - \#\{con n, components, of G[X]\}$
where $G[X]$ is the graph on ventices $V(G)$ and edges X.

Ex: If
$$A$$
 is a vector configuration in a vector space V ,
induced by E, then for $X \in E$
 $rk_{M(A)}(X) = dim(span \{V_e | e \in X\})$

Learman:
$$rk(cl(X)) = rk(X)$$

Proof: Let $I \in X$ be a maximal independent subject,
so that $rk(X) = III$.
For every $e \in cl(X) \setminus X$,
 $rk(I \cup e) \leq rk(X \cup e) = rk(X) = |I| = rk(I)$
 $(R2)$ of $\leq rk(I \cup e)$
(R2) of $erk(I \cup e)$
So we have equality throughout, and
 $rk(I \cup e) = rk(I) = II \leq |I \cup e|$
Thus, $I \cup e$ is dependent
 $\Rightarrow I$ is a maximal indep. subject of $cl(X)$
 $\Rightarrow rk(cl(X)) = |I| = rk(X)$.
Thus: Let E be a finite set and $cl: 2E - 32E$.
Then $cl = cl_M$ for some instand M on E
if and only if

(CLI) For all XSE, XSCI(X).

$$(CL2) If X \in Y \in E, then cl(X) \in cl(Y).$$

$$(CL3) For all X \in E, cl(cl(X)) = cl(X).$$

$$(CL4) If X \in E and e, f \in E, then$$

$$Mechan - Speinite = f \in cl(X \cup e) \setminus cl(X)$$

$$implies e \in cl(X \cup f).$$