G finite graph
$$\sim$$
 $M(G)$ with rank function
$$\text{rk}_{M(G)}(X) = \#V(G) - \#\{\text{conn. comp. of } G[X]\}$$

for X S E(6).

Then X is a flat
$$\iff$$
 any edge in $E(G) \setminus X$ connects two components of $G[X]$.

$$X = E(C[N]) \prod E(C[N]) \prod \dots \prod E(C[N])$$

<u>r</u>	flets of mak r	#flats of muh r
Ч	Ks	l
3	5 Ky snbymphs 10 Kz II Kz Subymphs	15
2	15 pairs of dijjoint edges 10 Kz subsumplus	25
ı	any single edge	10
O	Ø	ı

Def: The uniform matroid of maker on a elements is the matroid Ur, a with ground set $(0 \le r \le n)$ $E(U_r,n) = [n] = \{1,...,n\}$ and independent set

 $I(U_{r,n}) = \{I \subseteq [n] \mid III \leq r\}.$

- · Chech: rk(Ur,n) = r
- · Un, n is called a free matroid or a boolean matroid
- · Uo, o is called the empty matroid. It is the unique matroid on Ø.

Questions: hhat me the bases, circuits, much function, clus une op., flats?

· Is Ur, a graphic? Representable?